, Volume 667, Issue 1, pp 15–30 | Cite as

The effect of in-stream gravel extraction in a pre-alpine gravel-bed river on hyporheic invertebrate community

  • Nataša Mori
  • Tatjana Simčič
  • Simon Lukančič
  • Anton Brancelj
Primary Research Paper


We investigated the effect of in-stream gravel extraction in a pre-alpine gravel-bed river on hyporheic invertebrate community, together with changes in the hyporheic geomorphology, physico-chemistry and biofilm activity. Hyporheic invertebrates were collected, together with environmental data, on seven sampling occasions from June 2004 to May 2005, at two river reaches—at the site of in-stream gravel extraction and at a site 2.5 km upstream. The hyporheic samples were taken from the river bed and from the gravel bars extending laterally from the stream channel. The invertebrate community was dominated by insect larvae (occasional hyporheos), followed by meiofauna (permanent hyporheos). Stygobionts were present at low species richness and in low densities. Gravel extraction from the stream channel led to changes in the patterns of water exchange between surface and subsurface and changes in the sediment composition at the site. Immediate reductions in density and taxonomic richness of invertebrates were observed, together with changes in their community composition. The hyporheic invertebrate community in the river recovered relatively fast (in 2.5 months) by means of density and taxonomic richness, while by means of community composition invertebrates needed 5–7 months to recover. The impact of fine sediments (<0.1 mm) on biofilm activity measured through ETS activity and hyporheic invertebrate density and taxonomic richness was strongly confirmed in this study.


Disturbance In-stream gravel extraction Pre-alpine river Hyporheic zone Invertebrates Biofilm 



The authors thank C. Fišer, C. Meisch, I. Sivec, B. Sket, G. Urbanič, and D. Zabric for their help in determining Ostracoda, Amphipoda, Isopoda, Plecoptera, Trichoptera and Ephemeroptera and A. Jerebic for chemical analyses of water samples. Special thanks go to D. Jesenšek from Tolmin Angling Club for providing information about gravel extraction activities in the river Bača. Critical and constructive comments from the reviewers and an editor greatly improved the manuscript. The research was supported by the Slovenian Ministry of Higher Education, Science and Technology.

Supplementary material

10750_2011_648_MOESM1_ESM.docx (23 kb)
Supplementary material 1 (DOCX 23 kb)


  1. Bamstedt, U., 1980. ETS activity as an estimator of respiratory rate of zooplankton populations. The significance of variations in environmental factors. Journal of Experimental Marine Biology and Ecology 42: 267–283.CrossRefGoogle Scholar
  2. Bärlocher, F. & J. H. Murdoch, 1989. Hyporheic biofilms – a potential food source for interstitial animals. Hydrobiologia 184: 61–67.CrossRefGoogle Scholar
  3. Botosaneanu, L., 1986. Stygofauna Mundi: A Faunistic, Distributional, and Ecological Synthesis of the World Fanna Inhabiting Subterranean Waters (including the Marine Interstitial). E. J. Brill, Leiden.Google Scholar
  4. Bou, C. & R. Rouch, 1967. Un nouveau champ de recherches sur la faune aquatique souterraine. Comptes Rendus de l’académie des sciences de Paris 265: 369–370.Google Scholar
  5. Boulton, A. J., 2007. Hyporheic rehabilitation in rivers: restoring vertical connectivity. Freshwater Biology 52: 632–650.CrossRefGoogle Scholar
  6. Boulton, A. J., H. M. Valett & S. G. Fisher, 1992. Spatial distribution and taxonomic composition of the hyporheos of several Sonoran Desert streams. Archiv für Hydrobiologie 125: 37–61.Google Scholar
  7. Brown, A. V., M. M. Lyttle & K. B. Brown, 1998. Impacts of gravel mining on gravel bed streams. Transactions of the American Fisheries Society 127: 979–994.CrossRefGoogle Scholar
  8. Brunke, M. & T. Gonser, 1997. The ecological significance of exchange processes between rivers and groundwater. Freshwater Biology 37: 1–33.CrossRefGoogle Scholar
  9. Claret, C., P. Marmonier & J.-P. Bravard, 1998. Seasonal dynamics of nutrient and biofilm in interstitial habitats of two contrasting riffles in a regulated large river. Aquatic Sciences 60: 33–55.CrossRefGoogle Scholar
  10. Craft, J. A., J. A. Stanford & M. Pusch, 2002. Microbial respiration within a floodplain aquifer of a large gravel-bed river. Freshwater Biology 47: 251–261.CrossRefGoogle Scholar
  11. Datry, T., S. T. Larned & M. R. Scarsbrook, 2007. Responses of hyporheic invertebrate assemblages to large-scale variation in flow permanence and surface-subsurface exchange. Freshwater Biology 52: 1452–1462.CrossRefGoogle Scholar
  12. Dole-Olivier, M.-J., P. Marmonier & J.-L. Beffy, 1997. Response of invertebrates to lotic disturbance: is the hyporheic zone a patchy refugium? Freshwater Biology 37: 257–276.CrossRefGoogle Scholar
  13. Downes, B. J., L. A. Barmuta, P. G. Fairweather, D. P. Faith, M. J. Keough, P. S. Lake, B. D. Mapstone & G. P. Quinn, 2002. Monitoring Ecological Impacts. Concepts and Practice in Flowing Waters. Cambridge University Press, New York.CrossRefGoogle Scholar
  14. Findlay, S., 1995. Importance of surface–subsurface exchange in stream ecosystems: the hyporheic zone. Limnology and oceanography 40: 159–164.CrossRefGoogle Scholar
  15. Fowler, J. & R. G. Death, 2001. The effect of environmental stability on hyporheic community structure. Hydrobiologia 445: 85–95.CrossRefGoogle Scholar
  16. Freeze, R. A. & J. A. Cherry, 1979. Groundwater. Prentice-Hall, Englewood Cliffs.Google Scholar
  17. G.-Toth, L., 1999. Aktivität des Electronentransportsystems. In Von Tumpling, W. & G. Friedrich (eds), Biologische Gewässeruntersuchung. Methoden der Biologische Wasseruntersuchung 2. Gustav Fischer Verlag, Stuttgart: 465–473.Google Scholar
  18. Geist, D. R. & D. D. Dauble, 1998. Redd site selection and spawning habitat use by fall chinook salmon: the importance of geomorphic features in large rivers. Environmental Management 22: 655–669.PubMedCrossRefGoogle Scholar
  19. Gibert, J., M.-J. Dole-Olivier, P. Marmonier & P. Vervier, 1990. Surface water/groundwater ecotones. In Naiman, R. J. & H. Decamps (eds), Ecology and Management of Aquatic–Terrestial Ecotones. The Parthenon Publishing Group, Carnforth: 199–225.Google Scholar
  20. Gibert, J., D. L. Danielopol & J. A. Stanford, 1994. Groundwater Ecology. Academic Press, New York.Google Scholar
  21. Ginet, R. & V. Decou, 1977. Initiation à la Biologie et à l’Ecologie Souterraines. Delarge, Paris.Google Scholar
  22. Grimm, N. B. & S. G. Fisher, 1984. Exchange between interstitial and surface water: implications for stream metabolism and nutrient cycling. Hydrobiologia 111: 219–228.CrossRefGoogle Scholar
  23. Hancock, P. J., 2002. Human impacts on the stream–groundwater exchange zone. Environmental Management 29: 763–781.PubMedCrossRefGoogle Scholar
  24. Hancock, P. J., 2006. The response of hyporheic invertebrate communities to a large flood in the Hunter River, New South Wales. Hydrobiologia 568: 255–262.CrossRefGoogle Scholar
  25. Hunt, G. W. & E. H. Stanley, 2003. Environmental factors influencing the composition and distribution of the hyporheic fauna in Oklahoma streams: variation acrosss ecoregions. Archiv fűr Hydrobiologie 158: 1–23.CrossRefGoogle Scholar
  26. Jensen, A. & B. Mogensen, 2000. Environmental Aspects of Dredging. Effects, Ecology and Economy. IADC/CEDA, Hague.Google Scholar
  27. Jones, J. B. & R. M. Holmes, 1996. Surface–subsurface interactions in stream ecosystems. Trends in Ecology and Evolution 11: 239–242.PubMedCrossRefGoogle Scholar
  28. Kawanishi, R., Y. Kudo & M. Inoue, 2010. Habitat use by spinous loach (Cobitis shikokuensis) in southwestern Japan: importance of subsurface interstices. Ecological Research 25: 837–845.CrossRefGoogle Scholar
  29. Kelly, D., A. Mckerchar & M. Hicks, 2005. Making concrete: ecological implications of gravel extraction in New Zealand rivers. Water & Atmosphere 13: 20–21.Google Scholar
  30. Kenner, R. A. & S. I. Ahmed, 1975. Correlation between oxygen utilization and electron transport activity in marine phytoplankton. Marine Biology 33: 129–133.CrossRefGoogle Scholar
  31. Kondolf, G. M., 1997. Hungry water: effects of dams and gravel mining on river channels. Environmental Management 24: 533–551.CrossRefGoogle Scholar
  32. Lampert, W., 1984. The measurements of respiration. In Downing, J. A. & F. H. Rigler (eds), A Manual on Methods for the Assessment of Secondary Productivity in Fresh Water. Blackwell Scientific Publications, Oxford: 413–468.Google Scholar
  33. Malard, F., K. Tockner, M.-J. Dole-Olivier & J. V. Ward, 2002a. A landscape perspective of surface–subsurface hydrological exchanges in river corridors. Freshwater Biology 47: 621–640.CrossRefGoogle Scholar
  34. Malard, F., M.-J. Dole-Olivier, J. Mathieu & F. Stoch, 2002b. Sampling Manual for the Assessment of Regional Groundwater Biodiversity. Universite Claude Bernard, Lyon.Google Scholar
  35. Malard, F., D. Galassi, M. Lafont, S. Dolédec & J. W. Ward, 2003. Longitudinal patterns of invertebrates in the hyporheic zone of a glacial river. Freshwater Biology 48: 1709–1725.CrossRefGoogle Scholar
  36. Matthaei, C. D., U. Uehlinger & A. Frutiger, 1997. Response of benthic to natural versus experimental disturbance in a Swiss prealpine river. Freshwater Biology 37: 61–77.CrossRefGoogle Scholar
  37. Mulholland, P. J. & D. L. DeAngelis, 2000. Surface–subsurface exchange and nutrient spiraling. In Jones, J. B. & P. J. Mulholland (eds), Streams and Ground Waters. Academic Press, San Diego: 149–166.CrossRefGoogle Scholar
  38. Olsen, D. A. & C. R. Townsend, 2003. Hyporheic community composition in a gravel-bed stream: influence of vertical hydrological exchange, sediment structure and physicochemistry. Freshwater Biology 48: 1363–1378.CrossRefGoogle Scholar
  39. Olsen, D. A. & C. R. Townsend, 2005. Flood effects on invertebrates, sediments and particulate organic matter in the hyporheic zone of a gravel-bed stream. Freshwater Biology 50: 839–853.CrossRefGoogle Scholar
  40. Orghidan, T., 1959. Ein neuer Lebensraum des Unterirdischen Wassers der hyporheischen Biotope. Archiv für Hydrobiologie 55: 392–414.Google Scholar
  41. Packard, T. T., 1971. The measurement of respiratory electron-transport activity in marine phytoplankton. Journal of Marine Research 29: 235–244.Google Scholar
  42. Pearson, R. G. & N. V. Jones, 1975. The effects of dredging operations on the benthic community of a chalk stream. Biological Conservation 8: 273–278.CrossRefGoogle Scholar
  43. Pospisil, P., 1994. The groundwater fauna of a Danube Aquifer in the “Lobau” Wetland in Vienna, Austria. In Danielopol, D. & J. A. Stanford (eds), Groundwater Ecology. Academic Press, New York: 347–366.Google Scholar
  44. Pusch, M., 1996. The metabolism of organic matter in the hyporheic zone of a mountain stream, and its spatial distribution. Hydrobiologia 323: 107–118.CrossRefGoogle Scholar
  45. Pusch, M. & J. Schwoerbel, 1994. Community respiration in hyporheic sediments of a mountain stream (Steina, Black Forest). Archiv für Hydrobiologie 130: 35–52.Google Scholar
  46. Rivier, B. & J. Seguier, 1985. Physical and biological effects of gravel extraction in river beds. In Alabaster, J. S. (ed.), Habitat Modification and Freshwater. Fisheries Butterworths, London: 131–146.Google Scholar
  47. Schwoerbel, J., 1964. Die Bedeutung des Hyporheals für die benthischen Lebensgemeinschaften des Fliessgewässers. Verhandlungen der Internationalen Vereinigung fur theoretische und angewandte Limnologie 15: 215–226.Google Scholar
  48. Shimizu, T., 2002. Life history of a Japanese spinous loach, Cobitis takatsuensis, in Shikoku Island. Japanese Journal of Ichthyology 49: 33–40.Google Scholar
  49. Simčič, T. & A. Brancelj, 2003. Estimation of the proportion of metabolically active mass in the amphipod Gammarus fossarum. Freshwater Biology 48: 1093–1099.CrossRefGoogle Scholar
  50. Simčič, T. & N. Mori, 2007. Intensity of mineralization in the hyporheic zone of the prealpine river Baca (West Slovenia). Hydrobiologia 586: 221–234.CrossRefGoogle Scholar
  51. Songster-Alpin, M. S. & R. L. Klotz, 1995. A comparison of electron transport system activity in stream and beaver pond sediments. Canadian Journal of Fisheries and Aquatic Sciences 52: 1318–1326.CrossRefGoogle Scholar
  52. SPSS for Windows, Rel. 17.0.0. 2008. Chicago: SPSS Inc.Google Scholar
  53. Ter Braak, C. J. F. & P. Šmilauer, 2002. CANOCO, version 4.5.Google Scholar
  54. Ter Braak, C. J. F. & I. C. Prentice, 1988. A theory of gradient analysis. Advances in Ecological Research 18: 271–317.CrossRefGoogle Scholar
  55. Townsend, C. R. & A. G. Hildrew, 1994. Species traits in relation to a habitat templet for river systems. Freshwater Biology 31: 265–275.CrossRefGoogle Scholar
  56. Vervier, P., J. Gibert, P. Marmonier & M.-J. Dole-Olivier, 1992. A perspective on the permeability of the surface freshwater–groundwater ecotone. Journal of the North American Benthological Society 11: 93–102.CrossRefGoogle Scholar
  57. Ward, J. V., 1992. Aquatic Insect Ecology. Part I. Biology and Habitat. Wiley, New York.Google Scholar
  58. Williams, D. D., 1977. Movements of benthos during recolonisation of temporary streams. Oikos 29: 306–312.CrossRefGoogle Scholar
  59. Williams, D. D., 1984. The hyporheic zone as a habitat for aquatic insects and associated arthopods. In Rosenberg, D. M. & V. H. Resh (eds), The Ecology of Aquatic Insects. Praeger Publishers, New York: 430–455.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Nataša Mori
    • 1
  • Tatjana Simčič
    • 1
  • Simon Lukančič
    • 1
  • Anton Brancelj
    • 1
  1. 1.Department of Freshwater and Terrestrial Ecosystems ResearchNational Institute of BiologyLjubljanaSlovenia

Personalised recommendations