, 669:21 | Cite as

Responses of two Mediterranean seagrasses to experimental changes in salinity

  • Yolanda Fernández-Torquemada
  • José Luis Sánchez-Lizaso
Primary research paper


The aim of this study is to examine the effects of variations in salinity levels on growth and survival of two fast-growing Mediterranean seagrasses, Cymodocea nodosa and Zostera noltii. We also tested the capacity of C. nodosa to acclimate to a gradual increase in salinity and to discover how it responds to a sharp rise in salinity in combination with other factors, such as increases in temperature, seasonality and different plant-population origins. Several short-term (10 days) experiments were conducted under controlled conditions. For each experiment, ten marked shoots were placed in 5-l aquaria, where they were exposed to different salinity treatments (ranging from 2 to 72 psu). Growth and survival of both species were significantly affected by salinity. A significant effect between salinity and temperature on the shoot growth rate of C. nodosa was also detected, but not on shoot mortality. When C. nodosa plants were acclimated by gradually increasing the salinity level, it was observed that acclimatisation improved tolerance to salinity changes. A different response to salinity variations, depending on the origin of the plants or the season of the year, was also detected. These results indicated that Z. noltii plants tolerate conditions of hyposalinity better than C. nodosa, and that the tolerance range of C. nodosa may change depending on the temperature, the season or the population.


Salinity effects Salinity tolerance Desalination impact Cymodocea nodosa Zostera noltii 



This research was financed by an ACUAMED contract and by an FPI grant (FPI 01 A 002) from the Generalitat Valenciana.


  1. Adams, J. B. & G. C. Bate, 1994. The ecological implications of tolerance to salinity by Ruppia cirrhosa (Petagna) Grande and Zostera capensis Setchell. Botanica Marina 37: 449–456.CrossRefGoogle Scholar
  2. Arai, M., J. Y. Pak, K. Nomura & T. Nitta, 1991. Seawater-resistant, non-spherical protoplasts from seagrass leaves. Physiologia Plantarum 83: 551–559.CrossRefGoogle Scholar
  3. Benjamin, K. J., D. I. Walker, A. J. McComb & J. Kuo, 1999. Structural response of marine and estuarine plants of Halophila ovalis (R.Br.) Hook. f. to long-term hyposalinity. Aquatic Botany 64: 1–17.CrossRefGoogle Scholar
  4. Biebl, R. & C. P. McRoy, 1971. Plasmatic resistance of respiration and photosynthesis of Zostera marina at different salinities and temperatures. Marine Biology 8: 48–56.CrossRefGoogle Scholar
  5. Caye, G. & A. Meinesz, 1986. Experimental study of seed germination in the seagrass Cymodocea nodosa. Aquatic Botany 26: 79–87.CrossRefGoogle Scholar
  6. Caye, G., C. Bulard, A. Meinesz & F. Loquès, 1992. Dominant role of seawater osmotic pressure on germination in Cymodocea nodosa. Aquatic Botany 42: 187–193.CrossRefGoogle Scholar
  7. Charpentier, A., P. Grillas, F. Lescuyer, E. Coulet & I. Auby, 2005. Spatio-temporal dynamics of a Zostera noltii dominated community over a period of fluctuating salinity in a shallow lagoon, Southern France. Estuarine Coastal and Shelf Science 64: 307–315.CrossRefGoogle Scholar
  8. Chesnes, T. C. & C. L. Montague, 2001. The effects of salinity fluctuation on the productivity and osmoregulation of two seagrass species. Estuarine Research Federation Conference Abstracts, November 4–8, 2001, St. Petersburg, Florida.Google Scholar
  9. den Hartog, C., 1970. The Sea-Grasses of the World. North-Holland Publications Company, Amsterdam.Google Scholar
  10. Doering, P. H. & R. H. Chamberlain, 1998. Experimental studies on the salinity tolerance of turtle grass, Thalassia testudinum. In Bortone, S. A. (ed.), Workshop on Seagrasses. Subtropical and Tropical Seagrass Management Ecology: Responses to Environmental Stress. Fort Myers, Florida: 13.Google Scholar
  11. Drew, E. A., 1978. Factors affecting photosynthesis and its seasonal variation in the seagrasses Cymodocea nodosa (Ucria) Ascherson and Posidonia oceanica (L.) Delile in the Mediterranean. Journal of Experimental Marine Biology and Ecology 31: 173–194.CrossRefGoogle Scholar
  12. Drew, E. A., 1979. Physiological aspects of primary production in seagrasses. Aquatic Botany 7: 139–150.CrossRefGoogle Scholar
  13. Dring, M. J., 1992. The Biology of Marine Plants. Cambridge University Press, Cambridge.Google Scholar
  14. Druehl, L. D., 1981. Geographical distribution. In Lobban, L. S. & M. J. Wynne (eds), The Biology of Seaweeds. Blackwell, Oxford: 306–325.Google Scholar
  15. Fernández, J. A., M. J. García-Sánchez & H. H. Felle, 1999. Physiological evidence for a proton pump and sodium exclusion mechanisms at the plasma membrane of the marine angiosperm Zostera marina L. Journal of Experimental Botany 50: 1763–1768.CrossRefGoogle Scholar
  16. Fernández-Torquemada, Y. & J. L. Sánchez-Lizaso, 2005. Effects of salinity on leaf growth and survival of the Mediterranean seagrass Posidonia oceanica (L.) Delile. Journal of Experimental Marine Biology and Ecology 320: 57–63.CrossRefGoogle Scholar
  17. Fernández-Torquemada, Y., J. M. González-Correa & J. L. Sánchez-Lizaso, 2005a. Preliminary results of the monitoring of the brine discharge produced by the SWRO desalination plant of Alicante (SE Spain). Desalination 182: 395–402.CrossRefGoogle Scholar
  18. Fernández-Torquemada, Y., M. J. Durako & J. L. Sánchez-Lizaso, 2005b. Effects of salinity and possible interactions with temperature and pH on growth and photosynthesis of Halophila johnsonii Eiseman. Marine Biology 148: 251–260.CrossRefGoogle Scholar
  19. Fernández-Torquemada, Y., J. M. Gónzalez-Correa, A. Loya, L. M. Ferrero, M. Díaz-Valdés & J. L. Sánchez-Lizaso, 2009. Dispersion of brine discharge from seawater reverse osmosis desalination plants. Desalination and Water Treatment 5: 137–145.CrossRefGoogle Scholar
  20. Fukuhara, T., J. Y. Pak, Y. Ohwaki, H. Tsujimura & T. Nitta, 1996. Tissue-specific expression of the gene for a putative plasma membrane H+-ATPase in a seagrass. Plant Physiology 110: 35–42.PubMedCrossRefGoogle Scholar
  21. Gacia, E., O. Invers, M. Manzanera, E. Ballesteros & J. Romero, 2007. Impact of the brine from a desalination plant on a shallow seagrass (Posidonia oceanica) meadow. Estuarine Coastal and Shelf Science 72: 579–590.CrossRefGoogle Scholar
  22. Greve, T. M. & T. Binzer, 2004. Which factors regulate seagrass growth and distribution? In Borum, J., C. M. Duarte, D. Krause-Jensen & T. M. Greve (eds), European Seagrasses an Introduction to Monitoring and Management. The M&Ms Project, Hillerød: 19–23.Google Scholar
  23. Hillman, K., A. J. McComb & D. I. Walker, 1995. The distribution, biomass and primary production of the seagrass Halophila ovalis in the Swan/Canning Estuary, Western Australia. Aquatic Botany 51: 1–54.CrossRefGoogle Scholar
  24. Hootsmans, M. J. M., J. E. Vermaat & W. van Vierssen, 1987. Seed bank development, germination and early seedling survival of two seagrass species from The Netherlands: Zostera marina L. and Zostera noltti Hornem. Aquatic Botany 28: 275–285.CrossRefGoogle Scholar
  25. Jagels, R., 1973. Studies of a marine grass, Thalassia testudinum I. Ultrastructure of the osmoregulatory leaf cells. American Journal of Botany 60: 1003–1009.CrossRefGoogle Scholar
  26. Kamermans, P., M. A. Hemminga & D. J. de Jong, 1999. Significance of salinity and silicon levels for growth of a formerly estuarine eelgrass (Zostera marina) population (Lake Grevelingen, The Netherlands). Marine Biology 133: 527–539.CrossRefGoogle Scholar
  27. Kerr, E. A. & S. Strother, 1985. Effects of irradiance, temperature and salinity on photosynthesis of Zostera muelleri. Aquatic Botany 23: 177–183.CrossRefGoogle Scholar
  28. Kinne, O., 1964. The effects of temperature and salinity on marine and brackish water animals. II. Salinity and temperature salinity combinations. In Barnes, H. (ed.), Oceanography and Marine Biology. An Annual Review. Haefner, New York: 281–339.Google Scholar
  29. Kirst, G. O., 1989. Salinity tolerance of eukaryotic marine algae. Annual Reviews of Plant Physiology. Plant Molecular Biology 40: 21–53.Google Scholar
  30. Kraemer, G. & L. Mazzella, 1999. Nitrogen acquisition, storage, and use by the co-occurring Mediterranean seagrasses Cymodocea nodosa and Zostera noltii. Marine Ecology Progress Series 183: 95–103.CrossRefGoogle Scholar
  31. Kraemer, G., R. H. Chamberlain, P. H. Doering, A. D. Steinman & M. Hanisak, 1999. Physiological responses of transplant of the freshwater angiosperm Vallisneria americana along a salinity gradient in the Caloosahatchee Estuary (Southwestern Florida). Estuaries 22: 138–148.CrossRefGoogle Scholar
  32. Lattemann, S. & T. Höpner, 2003. Seawater desalination. Impacts of brine and chemical discharges on the marine environment, Desalination Publications, L’Aquila.Google Scholar
  33. Loques, F., G. Caye & A. Meinesz, 1990. Germination in the marine phanerogam Zostera noltii Hornemann at Golfe Juan, French Mediterranean. Aquatic Botany 38: 249–260.CrossRefGoogle Scholar
  34. Marbà, N., J. Cebrian, S. Enríquez & C. M. Duarte, 1996. Growth patterns of Western Mediterranean seagrasses: species-specific responses to seasonal forcing. Marine Ecology Progress Series 133: 203–215.CrossRefGoogle Scholar
  35. Mazzella, L., M. B. Scipione, M. C. Gambi, M. C. Buia, M. Lorenti, V. Zupo & G. Cancemi, 1993. The Mediterranean seagrass Posidonia oceanica and Cymodocea nodosa. A comparative overview. First International Conference on the Mediterranean Coastal Environment, Antalya, Turkey: 103–116.Google Scholar
  36. McMillan, C. & F. N. Moseley, 1967. Salinity tolerances of five marine spermatophytes of Redfish Bay, Texas. Ecology 48: 503–506.CrossRefGoogle Scholar
  37. Montague, C. L. & J. A. Ley, 1993. A possible effect of salinity fluctuation on abundance of benthic vegetation and associated fauna in Northeastern Florida Bay. Estuaries 16: 703–717.CrossRefGoogle Scholar
  38. Ogata, E. & T. Matsui, 1965. Photosynthesis in several marine plants of Japan as affected by salinity, drying and pH, with attention to their growth habitats. Botanica Marina 8: 199–217.CrossRefGoogle Scholar
  39. Pagès, J. F., M. Pérez & J. Romero, 2010. Sensitivity of the seagrass Cymodocea nodosa to hypersaline conditions: a microcosm approach. Journal of Experimental Marine Biology and Ecology 386: 34–38.CrossRefGoogle Scholar
  40. Pak, J. Y., T. Fukuhara & T. Nitta, 1995. Discrete subcellular localization of membrane-bound ATPase activity in marine angiosperms and marine algae. Planta 196: 15–22.PubMedCrossRefGoogle Scholar
  41. Pavón-Salas, N., R. Herrera, A. Hernández-Guerra & R. Haroun, 2000. Distributional pattern of seagrasses in the Canary Islands (Central-East Atlantic Ocean). Journal of Coastal Research 16: 328–335.Google Scholar
  42. Peduzzi, P. & A. Vukovič, 1990. Primary production of Cymodocea nodosa in the Gulf of Trieste (northern Adriatic Sea): a comparison of methods. Marine Ecology Progress Series 64: 197–207.CrossRefGoogle Scholar
  43. Peralta, G., F. G. Brun, I. Hernández, J. J. Vergara & J. L. Pérez-Lloréns, 2005. Morphometric variations as acclimation mechanisms in Zostera noltii beds. Estuarine Coastal and Shelf Science 64: 347–356.CrossRefGoogle Scholar
  44. Pérez, M. & J. Romero, 1992. Photosynthetic response to light and temperature of the seagrass Cymodocea nodosa and the prediction of its seasonality. Aquatic Botany 43: 51–62.CrossRefGoogle Scholar
  45. Pérez, M., C. M. Duarte, J. Romero, K. Sand-Jensen & T. Alcoverro, 1994. Growth plasticity in Cymodocea nodosa stands: the importance of nutrient supply. Aquatic Botany 47: 249–264.CrossRefGoogle Scholar
  46. Pérez Ruzafa, A., C. Marcos, I. M. Pérez Ruzafa & J. D. Ros, 1987. Evolución de las características ambientales y de los doblamientos del Mar Menor (Murcia, SE España). Anales de Biología 12: 53–65.Google Scholar
  47. Philippart, C. J. M., 1995. Seasonal variation in growth and biomass of an intertidal Zostera noltii stand in the Dutch Wadden Sea. Netherlands Journal of Sea Research 33: 205–218.CrossRefGoogle Scholar
  48. Phillips, R. C. & E. G. Meñez, 1988. Seagrasses. Smithsonian Institution Press, Washington.Google Scholar
  49. Pinnerup, S. P., 1980. Leaf production of Zostera marina L. at different salinities. Ophelia Supplement 1: 219–224.Google Scholar
  50. Pirc, H., M. C. Buia & L. Mazzella, 1986. Germination and seedling development of Cymodocea nodosa (Ucria) Ascherson under laboratory conditions and “in situ”. Aquatic Botany 26: 181–188.CrossRefGoogle Scholar
  51. Ralph, P. J., 1998. Photosynthetic responses of Halophila ovalis (R. Br.) Hook. f. to osmotic stress. Journal of Experimental Marine Biology and Ecology 227: 203–220.CrossRefGoogle Scholar
  52. Ralph, P. J., 1999. Photosynthetic response of Halophila ovalis (R.Br.) Hook. f. to combined environmental stress. Aquatic Botany 65: 83–96.CrossRefGoogle Scholar
  53. Ramage, D. L. & D. R. Schiel, 1998. Reproduction in the seagrass Zostera novazelandica on intertidal platforms in southern New Zealand. Marine Biology 130: 479–489.CrossRefGoogle Scholar
  54. Reyes, J., M. Sansón & J. Afonso-Carrillo, 1995. Distribution and reproductive phenology of the seagrass Cymodocea nodosa (Ucria) Ascherson in the Canary Islands. Aquatic Botany 50: 171–180.CrossRefGoogle Scholar
  55. Robblee, M. B., T. R. Barber, P. R. Carlson, M. J. Durako, J. W. Fourqurean, L. K. Muehlstein, D. Porter, L. A. Yarbro, R. T. Zieman & J. C. Zieman, 1991. Mass mortality of the tropical seagrass Thalassia testudinum in Florida Bay (USA). Marine Ecology Progress Series 71: 297–299.CrossRefGoogle Scholar
  56. Sánchez-Lizaso, J. L., J. Romero, J. Ruiz, E. Gacia, J. L. Buceta, O. Invers, Y. Fernández-Torquemada, J. Mas, A. Ruiz-Mateo & M. Manzanera, 2008. Salinity tolerance of the Mediterranean seagrass Posidonia oceanica: recommendations to minimize the impact of brine discharges from desalination plants. Desalination 221: 602–607.CrossRefGoogle Scholar
  57. Thomas, D. N., J. C. Collins & G. Russell, 1988. Interactive effects of temperature and salinity upon net photosynthesis of Cladophora glomerata (L.) Kütz. and C. rupestris (L.) Kütz. Botanica Marina 31: 73–77.CrossRefGoogle Scholar
  58. Thorhaug, A. & J. Marcus, 1981. Mortality of Thalassia testudinum (Banks ex Konig) when exposed to the extremes of temperature, salinity and light. American Journal of Botany 68: 1102.Google Scholar
  59. Tomasko, D. A. & M. O. Hall, 1999. Productivity and biomass of the seagrass Thalassia testudinum along a gradient of freshwater influence in Charlotte Harbor, Florida. Estuaries 22: 592–602.CrossRefGoogle Scholar
  60. Touchette, B. W., 2007. Seagrass-salinity interactions: physiological mechanisms used by submersed marine angiosperms for a life at sea. Journal of Experimental Marine Biology and Ecology 350: 194–215.CrossRefGoogle Scholar
  61. Tyerman, S. D., 1989. Solute and water relations of seagrasses. In Larkum, A. W. D., A. J. McComb & S. A. Shepherd (eds), Biology of Seagrasses. Elsevier, Amsterdam: 729–759.Google Scholar
  62. Underwood, A. J., 1997. Experiments in Ecology. Their Logical Design and Interpretation using Analysis of Variance. Cambridge University Press, Cambridge.Google Scholar
  63. Underwood, A. J. & M. G. Chapman. 1997. Statistical program GMAV.5 for Windows. Institute of Marine Ecology, University of Sidney, Australia.Google Scholar
  64. van Katwijk, M. M., G. H. W. Schmitz, A. P. Gasseling & P. H. van Avesaath, 1999. Effects of salinity and nutrient load and their interaction on Zostera marina. Marine Ecology Progress Series 190: 155–165.CrossRefGoogle Scholar
  65. Vermaat, J. E., J. A. J. Beijer, R. Gijlstra, M. J. M. Hootsmans, C. J. M. Philippart, N. W. van den Brink & W. van Vierssen, 1993. Leaf dynamics and standing stocks of intertidal Zostera noltii Hornem and Cymodocea nodosa (Ucria) Ascherson on the Banc d’Arguin (Mauritania). Hydrobiologia 258: 59–72.CrossRefGoogle Scholar
  66. Vermaat, J. E., F. C. A. Verhagen & D. Lindenburg, 2000. Contrasting responses in two populations of Zostera noltii Hornem. to experimental photoperiod manipulation at two salinities. Aquatic Botany 67: 179–189.CrossRefGoogle Scholar
  67. Walker, D. I., 1985. Correlations between salinity and growth of the seagrass Amphibolis antarctica (Labill.) Sonder & Aschers., in Shark Bay, Western Australia, using a new method for measuring production rate. Aquatic Botany 23: 13–26.CrossRefGoogle Scholar
  68. Walker, D. I. & A. J. McComb, 1990. Salinity response of the seagrass Amphibolis antarctica (Labill.) Sonder et Aschers.: an experimental validation of field results. Aquatic Botany 36: 359–366.CrossRefGoogle Scholar
  69. Westphalen, G., E. O’Loughlin, G. Collings, J. Tanner, Y. Eglinton & S. Bryars, 2005. Responses to reduced salinities of the meadow forming seagrasses Amphibolis and Posidonia from the Adelaide metropolitan coast. ACWS technical report no 9 prepared for the Adelaide Coastal Waters Study Steering Committee. South Australian Research and Development Institute (Aquatic Sciences) Publication No. RD01/020814, Adelaide.
  70. Wortmann, J., J. W. Hearne & J. B. Adams, 1997. A mathematical model of an estuarine seagrass. Ecological Modeling 98: 137–149.CrossRefGoogle Scholar
  71. Zieman, J. C., 1974. Methods for the study of the growth and production of turtle grass, Thalassia testudinum König. Aquaculture 4: 139–143.CrossRefGoogle Scholar
  72. Zieman, J. C., 1975. Seasonal variation of turtle grass, Thalassia testudinum König, with reference to temperature and salinity effects. Aquatic Botany 1: 107–123.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Yolanda Fernández-Torquemada
    • 1
  • José Luis Sánchez-Lizaso
    • 1
  1. 1.Department of Marine Sciences and Applied BiologyUniversity of AlicanteAlicanteSpain

Personalised recommendations