Skip to main content

Advertisement

Log in

Light-independent mechanisms of virion inactivation in coastal marine systems

  • Primary research paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The hypothesis that specific components of seawater, such as particulate, dissolved and colloidal organic and inorganic material, render virions non-infective has long been postulated, but never rigorously tested. To address this hypothesis, the plaque assay method was used to derive infective decay rates, k, of two bacteriophages—P1 (marine host: PWH3a) and T4 (enteric host: E. coli B). We compared k values of bacteriophage suspended in serial filtrations of seawater, with and without autoclaving and UV oxidation. Both phages exhibited reduced decay rates in particle-free water (<0.2 μm) compared to <10 μm filtrate. The largest decrease in virion decay rates was achieved by autoclaving the 0.2 μm filtrate. UV oxidation of <0.2 μm filtrate, however, yielded higher decay rates than observed in autoclaved treatments. The lowest k values were seen in ultra-filtered seawater (<10 kDa). Exposure to a wide range of concentrations of Pronase E (a proteolytic enzyme), inorganic clay (kaolinite or montmorillonite), and organic particles (phytoplankton debris) did not promote phage inactivation. P1 infective titers were also not consistently reduced by exposures to axenic cultures of a resistant host mutant (PWH3a-R) and a non-host marine bacterium (MB-5). Finally, phage were exposed to a range of temperatures to derive activation energies required for phage inactivation. Application of the Arrhenius model to inactivation of T4 and P1 yielded activation energies (E a) of 49 and 40 kJ mol−1, respectively. This is the first comprehensive analysis in which specific seawater components were assayed for their ability to inactivate bacteriophage. Inactivation of these phage does not appear to depend on capsomere denaturation, proteolytic extracellular enzymes, sorption to non-host bacteria, clay particles or particulate organic debris, but is accelerated by naturally occurring particles, which include living organisms, and heat-labile colloids and macromolecules >10 kDa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adler-Nissen, L., 1986. Enzymatic Hydrolysis of food proteins. Elsevier: 427 pp.

  • Allwood, P. B., Y. S. Malik, C. W. Hedberg & S. M. Goyal, 2003. Survival of F-specific coliphage, feline calicivirus, and Escerichia coli in water: a comparative study. Applied and Environmental Microbiology 69: 5707–5710.

    Article  PubMed  CAS  Google Scholar 

  • Arnason, T. S. & R. G. Keil, 2000. Mechanisms of pore water organic matter adsorption to montmorillonite. Marine Chemistry 71: 309–320.

    Article  Google Scholar 

  • Berg, H. & E. M. Purcell, 1977. Physics of chemoreception. Biophysical Journal 20: 193–219.

    Article  PubMed  CAS  Google Scholar 

  • Bitton, G., 1987. Fate of Bacteriophages in water and wastewater treatment plants. In, S. M. Goyal, C. P. Gerba and G. Bitton Phage Ecology Wiley-Interscience: 181–195.

  • Bohannan, B. J. & R. E. Lenski, 1997. Effect of resource enrichment on a chemostat community of bacteria and bacteriophage. Ecology 78: 2303–2315.

    Article  Google Scholar 

  • Bratbak, G., M. Heldel, T. F. Thingstad & P. Tuomi, 1996. Dynamics of virus abundance in coastal seawater. FEMS Microbiology Ecology 19: 263–269.

    Article  CAS  Google Scholar 

  • Cannon, R. E., 1987. Cyanophage Ecology. In, S. M. Goyal, C. P. Gerba and G. Bitton Phage Ecology-Ecological and Applied Microbiology John Wiley and Sons: 245–265.

  • Carlson, K., 2005. Working with Bacteriophages: Common techniques and methodological approaches. In, E. Kutter and A. Sulakvelidze Bacteriophages: Biology and Applications CRC Press: 429–485.

  • Chrost, R. J., 1991. Microbial ectoenzymes in aquatic environments. In, R. J. Chrost Microbial enzymes in aquatic environments Springer: 29–54.

  • Donovan, J. & R. Beardslee, 1975. Heat stabilization produced by protein–protein stabilization. Journal of Biological Chemistry 250: 1966–1971.

    PubMed  CAS  Google Scholar 

  • Fuhrman, J. A. & C. Suttle, 1993. Viruses in marine planktonic systems. Oceanography 6: 51–63.

    Google Scholar 

  • Gobler, C. J., O. R. Anderson, M. D. Gastrich & S. W. Wilhelm, 2007. Ecological aspects of viral infection and lysis in the harmful brown tide alga Aureococcus anophagefferens. Aquatic Microbial Ecology 47: 25–36.

    Article  Google Scholar 

  • Kadavy, D. R., J. J. Shaffer, S. E. Lott, T. A. Wolf, C. E. Bolten, W. H. Gallimore, E. L. Martin, K. W. Nickerson & T. A. Kokjohn, 2000. Influence of Infected cell growth state on bacteriophage reactivation levels. Applied and Environmental Microbiology 66: 5206–5212.

    Article  PubMed  CAS  Google Scholar 

  • Kapuscinksi, R. B. & R. Mitchell, 1980. Processes controlling virus inactivation in coastal waters. Water Research 14: 363–371.

    Article  Google Scholar 

  • Kurganov, B., A. Lyubarev, J. Sanchez-Ruiz & V. Shnyrov, 1997. Analysis of differential scanning calorimetry data for proteins. Criteria of validity of one-step mechanism of irreversible protein denaturation. Biophysical Chemistry 69: 125–135.

    Article  PubMed  CAS  Google Scholar 

  • Lenski, R. E., 1988. Dynamics of interactions between bacteria and virulent bacteriophage. Advances in Microbial Ecology 10: 1–44.

    CAS  Google Scholar 

  • Lycke, E., S. Manusson & E. Lund, 1965. Studies on the nature of the virus inactivating capacity of sea water. Archives of Virology 17: 409–413.

    CAS  Google Scholar 

  • Marquez, M. & M. Vazquez, 1999. Modeling of enzymatic protein hydrolysis. Process Biochemistry 35: 111–117.

    Article  CAS  Google Scholar 

  • Martinez, J., D. C. Smith, G. F. Steward & F. Azam, 1996. Variability in ectohydrolytic enzyme activities of pelagic bacteria and its significance for substrate processing in the sea. Aquatic Microbial Ecology 10: 223–230.

    Article  Google Scholar 

  • Middleboe, M., 2000. Bacterial growth rate and marine virus-host dynamics. Microbial Ecology 40: 114–124.

    Google Scholar 

  • Middleboe, M., N. O. G. Jorgensen & N. Kroer, 1996. Effect of viruses on nutrient turnover and growth efficiency of noninfected marine bacterioplankton. Applied and Environmental Microbiology 62: 1991–1997.

    CAS  Google Scholar 

  • Mitchell, R. & H. W. Jannasch, 1969. Processes controlling virus inactivation in seawater. Environmental Science and Technology 3: 941–943.

    Article  CAS  Google Scholar 

  • Moebus, K., 1992. Laboratory investigations on the survival of marine bacteriophages in raw and treated seawater. Helgoland Marine Research 46: 251–273.

    Google Scholar 

  • Murray, A. G. & G. A. Jackson, 1992. Viral dynamics: a model of the effects of size, shape, motion and abundance of single-celled planktonic organisms and other particles. Marine Ecology Progress Series 89: 103–116.

    Article  Google Scholar 

  • Noble, R. T. & J. A. Fuhrman, 1997. Virus decay and its causes in coastal waters. Applied and Environmental Microbiology 63: 77–83.

    PubMed  CAS  Google Scholar 

  • Park, K. & D. Lund, 1984. Calorimetric study of thermal denaturation of B-lactoglobulin. Journal of Dairy Sciences 67: 1699–1706.

    Article  CAS  Google Scholar 

  • Paul, J. H. & S. Jiang, 2001. Lysogeny and Transduction. In, J. H. Paul Methods in Microbiology- Marine Microbiology Academic Press: 105–129.

  • Phillips, J. A. & T. D. Brock, 1991. Laboratory Manual: Biology of Microorganisms. Prentice Hall, 234 pp.

  • Satterberg, J., T. S. Arnason, E. J. Lesser & R. G. Keil, 2003. Sorption of organic matter from four phytoplankton species to montmorillonite, chlorite, and kaolinite. Marine Chemistry 81: 11–18.

    Article  CAS  Google Scholar 

  • Stumm, W. & J. T. Morgan, 1996. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters. 1022pp.

  • Suttle, C., 2005. Viruses in the sea. Nature 437: 356–361.

    Article  PubMed  CAS  Google Scholar 

  • Suttle, C., 2007. Marine viruses—major players in the global ecosystem. Nature Reviews-Microbiology 5: 801–812.

    Article  PubMed  CAS  Google Scholar 

  • Suttle, C. & F. Chen, 1992. Mechanisms and rates of decay of marine viruses in seawater. Applied and Environmental Microbiology 58: 3721–3729.

    PubMed  CAS  Google Scholar 

  • Suttle, C., A. M. Chan & M. T. Cottrell, 1991. Use of ultrafiltration to isolate viruses from seawater which are pathogens of marine phytoplankton. Applied and Environmental Microbiology 57: 721–726.

    PubMed  CAS  Google Scholar 

  • Taylor, G. T., C. Hein & M. Iabichella, 2003a. Temporal variations in viral distributions in the anoxic Cariaco Basin. Aquatic Microbial Ecology 30: 103–116.

    Article  Google Scholar 

  • Taylor, G. T., J. Way, Y. Yu & M. Scranton, 2003b. Ectohydrolase activity in surface waters of the Hudson River and western Long Island Sound estuaries. Marine Ecology Progress Series 263: 1–15.

    Article  CAS  Google Scholar 

  • Theng, B. K. G., 1974. Chemistry of clay-organic reactions, John Wiley & Sons Inc., 343 pp.

  • Wait, D. A. & M. D. Sobsey, 2001. Comparitive survival of enteric viruses and bacteria in Atlantic Seawater. Water Science and Technology 43: 139–142.

    PubMed  CAS  Google Scholar 

  • Weinbauer, M. G., 2004. Ecology of prokaryotic viruses. FEMS Microbiology Ecology 28: 127–181.

    CAS  Google Scholar 

  • Weinbauer, M. G., S. W. Wilhelm, C. Suttle & D. R. Graca, 1997. Photoreactivation compensates for UV damage and restores infectivity to natural marine virus communities. Applied and Environmental Microbiology 63: 2200–2205.

    PubMed  CAS  Google Scholar 

  • Whitehead, R. F. & S. DeMora, 2000. Marine Photochemistry and UV Radiation. In, R. E. Hester and R. M. Harrison Issues in Environmental Science and Technology: Causes and Environmental Implications of Increased UV-B radiation, Royal Society of Chemistry, p. 37–60.

  • Wilhelm, S. W., M. G. Weinbauer, C. Suttle, R. J. Pledger & D. L. Mitchell, 1998. Measurements of DNA damage and photoreactivation imply that most viruses in marine surface waters are infective. Aquatic Microbial Ecology 14: 215–222.

    Article  Google Scholar 

  • Wommack, K. E. & R. Colwell, 2000. Virioplankton: viruses in aquatic ecosystems. Microbiology and Molecular Biology Reviews 64: 69–114.

    Article  PubMed  CAS  Google Scholar 

  • Wommack, K. E., R. T. Hill, T. A. Muller & R. Colwell, 1996. Effects of sunlight on bacteriophage viability and structure. Applied and Environmental Microbiology 62: 1336–1341.

    PubMed  CAS  Google Scholar 

  • Zachary, A., 1978. An ecological study of bacteriophages of Vibrio Natriegens. Canadian Journal of Microbiology 24: 321–324.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are indebted to D. O’Shaunessy and J. Otto for their outstanding technical assistance and Drs. S. Munch, C. Gobler, and J. Collier for their expert advice. We would also like to thank Dr. H. G. Dam and Dr. D. E. Avery, as well as the editor and two anonymous reviewers for their insightful comments regarding this manuscript. A portion of this research fulfilled requirements for completion of M. Finiguerra’s Masters of Science degree. This research was funded by the U.S. National Oceanic and Atmospheric Administration’s Oceans and Human Health Initiative, grant #NA-04OAR4600197. School of Marine and Atmospheric Sciences contribution # 1400.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael B. Finiguerra.

Additional information

Handling editor: Pierluigi Viaroli

Rights and permissions

Reprints and permissions

About this article

Cite this article

Finiguerra, M.B., Escribano, D.F. & Taylor, G.T. Light-independent mechanisms of virion inactivation in coastal marine systems. Hydrobiologia 665, 51–66 (2011). https://doi.org/10.1007/s10750-011-0603-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-011-0603-x

Keywords

Navigation