Advertisement

Hydrobiologia

, Volume 664, Issue 1, pp 163–171 | Cite as

Behavioural and population responses to changing availability of Artemia prey by moulting black-necked grebes, Podiceps nigricollis

  • Nico Varo
  • Andy J. Green
  • Marta I. Sánchez
  • Cristina Ramo
  • Jesús Gómez
  • Juan A. Amat
Primary research paper

Abstract

We examined how availability of brine shrimps, Artemia parthenogenetica, influenced temporal aspects of foraging behaviour and population dynamics of moulting black-necked grebes, Podiceps nigricollis, from late August to early December in four salt ponds in the Odiel marshes, southern Spain, in 2008 and 2009. The moulting grebe population was higher in 2009, coinciding with an increase in shrimp biomass, with a peak of 2,500 birds in October. Grebes increased their time spent foraging as the season progressed, coinciding with decreases in shrimp biomass and water temperature. Foraging activity was lower in 2009, when shrimp biomass was greater. Diving was the most frequent feeding method, especially as the season progressed. Brine shrimps at the bottom of the water column were larger than those near the surface. Differences between years in grebe body mass suggest that changing shrimp availability and water temperature had an influence on body condition. The grebe population consumed an estimated 0.2–2.0% of the standing crop of Artemia per day, with this fraction increasing as the season progresses, thus contributing to the decline in the Artemia population. Our results suggest that moulting grebes are probably only able to adjust foraging effort within certain limits, especially at the end of moulting period when thermal stress is greatest and food supply is lowest. They may leave the study area when they can no longer meet their energy requirements.

Keywords

Brine shrimps Foraging behaviour Grebes Mediterranean wetlands Waterbirds 

Notes

Acknowledgments

Many volunteers participated in the capture of grebes, which was organized by Equipo de Seguimiento de Procesos Naturales (Estación Biológica de Doñana, CSIC) and Sociedad Española de Ornitología. We also thank Enrique Martínez, Director of Paraje Natural Marismas del Odiel, for granting access to the study site and facilities to conduct the field work, as well as anonymous referees for their comments on previous versions. Our study was financially supported by the Consejería de Innovación, Ciencia y Empresa (Junta de Andalucía, project P07-CVI-02700).

References

  1. Abbott, K. C., W. F. Morris & K. Gross, 2008. Simultaneous effects of food limitation and inducible resistance on herbivore population dynamics. Theoretical Population Biology 73: 63–78.PubMedCrossRefGoogle Scholar
  2. Amat, F., F. Hontoria, O. Ruiz, A. J. Green, F. Hortas, J. Figuerola & F. Hortas, 2005. The American brine shrimp as an exotic invasive species in the western Mediterranean. Biological Invasions 7: 37–47.CrossRefGoogle Scholar
  3. Bevan, R. M. & P. J. Butler, 1992. The effects of temperature on the oxygen consumption, heart rate and deep body temperature during diving in the Tufted duck, Aythya fuliga. Journal of Experimental Biology 163: 139–151.Google Scholar
  4. Britton, R. H., E. R. de Groot & A. R. Johnson, 1986. The daily cycle of feeding activity of the Greater Flamingo in relation to the dispersion of the prey Artemia. Wildfowl 37: 151–155.Google Scholar
  5. Caudell, J. N. & M. R. Conover, 2006a. Energy content and digestibility of brine shrimp (Artemia franciscana) and other prey items of eared grebes (Podiceps nigricollis) on the Great Salt Lake, Utah. Biological Conservation 130: 251–254.CrossRefGoogle Scholar
  6. Caudell, J. N. & M. R. Conover, 2006b. Behavioral and physiological responses of Eared Grebes (Podiceps nigricollis) to variations in brine shrimp (Artemia franciscana) densities. Western North American Naturalist 66: 12–22.CrossRefGoogle Scholar
  7. Charnov, E. L., 1976. Optimal foraging, the marginal value theorem. Theoretical Population Biology 9: 129–136.PubMedCrossRefGoogle Scholar
  8. Cooper, S. D., D. W. Winkler & P. H. Lenz, 1984. The effect of grebe predation on a brine population. Journal of Animal Ecology 53: 51–64.CrossRefGoogle Scholar
  9. de Leeuw, J. J., 1996. Diving costs as a component of daily energy budgets of aquatic birds and mammals: generalizing the inclusion of dive-recovery costs demonstrated in tufted ducks. Canadian Journal of Zoology 74: 2131–2142.CrossRefGoogle Scholar
  10. García-Jiménez, F. J. & J. F. Calvo-Sendín, 1987. El zampullín cuellinegro, Podiceps nigricollis, en la laguna de la Mata (Alicante). Ardeola 34: 102–105.Google Scholar
  11. Green, A. J., A. D. Fox, B. Hughes & G. M. Hilton, 1999. Time-activity budgets and site selection of white-headed Ducks (Oxyura leucocephala) at Burdur Lake, Turkey in late winter. Bird Study 46: 62–73.CrossRefGoogle Scholar
  12. Guillemain, M. & H. Fritz, 2002. Ecomorphology and coexistence in dabbling ducks: the role of lamellar density and body length in winter. Oikos 98: 547–551.CrossRefGoogle Scholar
  13. Guillemain, M., H. Fritz & N. Guillon, 2000a. Foraging behavior and habitat choice of wintering Northern Shoveler in a major wintering quarter in France. Waterbirds 23: 353–363.Google Scholar
  14. Guillemain, M., H. Fritz & N. Guillon, 2000b. The use of an artificial wetland by Shoveler Anas clypeata in western France: the role of food resources. Revue D Ecologie-La Terre Et La Vie 55: 263–274.Google Scholar
  15. Heath, J. P., W. A. Montevecchi & G. J. Robertson, 2008. Allocating foraging effort across multiple time scales: behavioral responses to environmental conditions by Harlequin ducks wintering at Cape St. Mary’s, Newfoundland. Waterbirds 31: 71–80.Google Scholar
  16. Iborra, O., F. Dhermain & P. Vidal, 1991. L’hivernage du grèbe à cou noir sur l’Etang de Berre (Bouches-du-Rhône). Alauda 59: 195–205.Google Scholar
  17. Jehl Jr., J. R., 1988. Biology of the eared grebe and willson’s phalarope in the no-breeding season: a study of adaptations to saline lakes. Studies in Avian Biology 12: 1–74.Google Scholar
  18. Jehl Jr., J. R., 1990a. Aspects of the molt migration. In Winner, E. G. (ed.), Migration Physiology and Ecophysiology. Springer-Verlag, Berlin: 102–113.Google Scholar
  19. Jehl Jr., J. R., 1990b. Field estimates of energetics in migrating and downed black-necked grebes. Journal of Avian Biology 24: 63–68.Google Scholar
  20. Krams, I., 2000. Length of feeding day and body weight of great tits in a single-and a two-predator environment. Behavioral Ecology and Sociobiology 48: 147–153.CrossRefGoogle Scholar
  21. Martin, T. E., 1987. Food as a limit on breeding birds: a life-history perspective. Annual Review of Ecology and Systematic 18: 453–487.CrossRefGoogle Scholar
  22. Odonoghue, M. & C. J. Krebs, 1992. Effects of supplemental food on snowshoe hare reproduction and juvenile growth at a cyclic population peak. Journal of Animal Ecology 61: 631–641.CrossRefGoogle Scholar
  23. Piersma, T., 1988. Breast muscle atrophy and constraints on foraging during the flightless period of wing moulting great crested grebes. Ardea 76: 96–106.Google Scholar
  24. Quintana, F., R. P. Wilson & P. Yorio, 2007. Dive depth and plumage air in wettable birds: the extraordinary case of the imperial cormorant. Marine Ecology Progress Series 334: 299–310.CrossRefGoogle Scholar
  25. Rodríguez-Pérez, H., M. Florencio, C. Gómez-Rodríguez, A. J. Green, C. Diaz-Paniagua & L. Serrano, 2009. Monitoring the invasion of the aquatic bug Trichocorixa verticalis verticalis (Hemiptera: Corixidae) in the wetlands of Doana National Park (SW Spain). Hydrobiologia 634: 209–217.CrossRefGoogle Scholar
  26. Salomonsen, F., 1968. The moult migration. Wildfowl 19: 5–24.Google Scholar
  27. Sánchez, M. I., A. J. Green & E. M. Y. Castellanos, 2005. Seasonal variation in the diet of the Redshank Tringa totanus in the Odiel Marshes, southwest Spain: a comparison of faecal and pellet analysis. Bird Study 52: 210–216.CrossRefGoogle Scholar
  28. Sánchez, M. I., A. J. Green & E. M. Castellanos, 2006a. Temporal and Spatial variation of an invertebrate community subjected to avian predation at the Odiel salt pans (SW Spain). Archiv für Hydrobiologie 166: 199–223.CrossRefGoogle Scholar
  29. Sánchez, M. I., B. B. Georgiev, P. N. Nikolov, G. P. Vasilieva & A. J. Green, 2006b. Red and transparent brine shrimps (Artemia parthenogenetica): comparative study of their cestode infections. Parasitological Research 100: 111–114.CrossRefGoogle Scholar
  30. Sánchez, M. I., A. J. Green & R. Alejandre, 2006c. Shorebird predation affects density, biomass, and size distribution of benthic chironomids in salt pans: an exclosure experiment. Journal of the North American Benthological Society 25: 9–18.CrossRefGoogle Scholar
  31. Sánchez, M. I., A. J. Green & E. M. Castellanos, 2006d. Spatial and temporal fluctuations in presence and use of chironomid prey by shorebirds in the Odiel saltpans, south-west Spain. Hydrobiologia 567: 329–340.CrossRefGoogle Scholar
  32. Schatz, G. S. & E. McCauley, 2007. Foraging behaviour of Daphnia in stoichiometric gradients of food quality. Oecologia 153: 1021–1030.PubMedCrossRefGoogle Scholar
  33. Systad, G. H., J. O. Bustnes & K. E. Erikstad, 2000. Behavioural responses to decreasing day length in wintering sea ducks. Auk 117: 33–40.CrossRefGoogle Scholar
  34. Van de Meutter, F., H. Trekels & A. J. Green, 2010. The impact of the North American waterbug Trichocorixa verticalis (Fieber) on aquatic macroinvertebrate communities in southern Europe. Fundamental and Applied Limnology 177: 283–292.CrossRefGoogle Scholar
  35. Van Impe, J., 1969. Concentración enorme de Podiceps nigricollis, Brehm, en Dobroudja-Roumanie. Alauda 37: 77–79.Google Scholar
  36. Varo, N. & J. A. Amat, 2008. Differences in foraging behaviour of sympatric coots with different conservation status. Wildlife Research 35: 612–616.CrossRefGoogle Scholar
  37. Winkler, D. W. & S. D. Cooper, 1986. Ecology of migrant black-necked grebes, Podiceps nigricollis, at Mono Lake, California. Ibis 128: 483–491.CrossRefGoogle Scholar
  38. Wurtsbaugh, W. A., 1992. Food-web modification by an invertebrate predator in the Great-Salt-Lake (USA). Oecologia 89: 168–175.Google Scholar
  39. Wurtsbaugh, W. A. & Z. M. Gliwicz, 2001. Limnological control of brine shrimp population dynamics and cyst production in the Great Salt Lake, Utah. Hydrobiologia 466: 119–132.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Nico Varo
    • 1
  • Andy J. Green
    • 1
  • Marta I. Sánchez
    • 1
  • Cristina Ramo
    • 1
  • Jesús Gómez
    • 1
  • Juan A. Amat
    • 1
  1. 1.Department of Wetland EcologyEstación Biológica de Doñana, C. S. I. CSevillaSpain

Personalised recommendations