, Volume 664, Issue 1, pp 219–225 | Cite as

Does the potentially toxic cyanobacterium Microcystis exist in the soda lakes of East Africa?

  • Kiplagat Kotut
  • Lothar Krienitz
Short research note


Presently, the food chains of the famous saline alkaline flamingo-lakes of East Africa are the focus of intense scientific discussion as the lakes host toxic cyanobacteria, which when consumed by Lesser Flamingos, weaken the birds and therefore make them susceptible to attacks by infective diseases. The distribution, genetic and toxicological aspects of Microcystis in Kenya has been studied extensively. Although there are reports on the occurrence of Microcystis in Kenya’s hypersaline alkaline lakes, they have not been confirmed. Our investigations carried out over a 10-year period in about 50 inland waters showed that Microcystis occurs exclusively in freshwaters, but never in the hypersaline alkaline lakes. Microscopic examinations of the phytoplankton of these lakes revealed the presence of Anabaenopsis abijatae (Nostococales) whose lumpy structure makes it roughly similar to Microcystis when viewed under an inverted microscope. We conclude that the possible occurrence of Microcystis in hypersaline alkaline lakes is doubtful and, as such, confirmatory studies including microphotographic documentation of findings should be carried out.


Anabaenopsis East Africa Lesser Flamingo Microcystis Soda lakes Toxic cyanobacteria 



We thank the Government of Kenya for permission to carry out this research (No. MOEST 13/001/31 C 90). We are grateful to the German Federal Ministry of Education and Research for its financial support (grant No. 01LC0001). Our sincere appreciation is also due to the County Councils of Koibatek and Baringo Districts and the Kenya Wildlife Service for granting us access to lakes Bogoria and Nakuru. Our gratitude is also due to Andreas Ballot, William Kimosop, and Hedy Kling, for their valuable input and useful discussions.


  1. Ballot, A., S. Pflugmacher, C. Wiegand, K. Kotut & L. Krienitz, 2003. Cyanobacterial toxins in Lake Baringo, Kenya. Limnologica 33: 2–9.Google Scholar
  2. Ballot, A., L. Krienitz, K. Kotut, C. Wiegand, J. S. Metcalf, G. A. Codd & S. Pflugmacher, 2004. Cyanobacteria and cyanobacterial toxins in three alkaline Rift Valley lakes of Kenya—Lakes Bogoria, Nakuru and Elmenteita. Journal of Plankton Research 26: 925–935.CrossRefGoogle Scholar
  3. Ballot, A., L. Krienitz, K. Kotut, C. Wiegand & S. Pflugmacher, 2005. Cyanobacteria and cyanobacterial toxins in the alkaline crater lakes Sonachi and Simbi, Kenya. Harmful Algae 4: 139–150.CrossRefGoogle Scholar
  4. Ballot, A., P. K. Dadheech, S. Haande & L. Krienitz, 2008. Morphological and phylogenetic analysis of Anabaenopsis abijatae and Anabaenopsis elenkinii (Nostocales, Cyanobacteria) from tropical inland water bodies. Microbial Ecology 55: 608–618.PubMedCrossRefGoogle Scholar
  5. Ballot, A., K. Kotut, E. Novelo & L. Krienitz, 2009. Changes of phytoplankton communities in Lakes Naivasha and Oloidien, examples of degradation and salinization of lakes in the Kenyan Rift Valley. Hydrobiologia 632: 359–363.CrossRefGoogle Scholar
  6. Bowman, J. S. & J. P. Sachs, 2008. Chemical and physical properties of some saline lakes in Alberta and Saskatchewan. Saline Systems.
  7. Codd, G. A., J. S. Metcalf, L. F. Morrison, L. Krienitz, A. Ballot, S. Pflugmacher, C. Wiegand & K. Kotut, 2003. Susceptibility of flamingos to cyanobacterial toxins via feeding. The Veterinary Record 152: 722–723.PubMedGoogle Scholar
  8. Codd, G. A., L. F. Morrison & J. S. Metcalf, 2005. Cyanobacterial toxins: risk management for health protection. Toxicology & Applied Pharmacology 203: 264–272.CrossRefGoogle Scholar
  9. Cronberg, G. & L. Van Baalen, 2004. Microcystis botrys and M. toxica—the same species? In 16th Symposium of the International Association for Cyanophyte Research, Luxembourg 2004. Abstracts, p. 31.Google Scholar
  10. Dadheech, P. K., L. Krienitz, K. Kotut, A. Ballot & P. Casper, 2009. Molecular detection of uncultured cyanobacteria and aminotransferase domains for cyanotoxin production in sediments. FEMS Microbiology Ecology 68: 340–350.PubMedCrossRefGoogle Scholar
  11. Githaiga, J. M. 2003. Ecological factors determining utilization patterns and inter-lake movements of the flamingos in Kenyan alkaline lakes. Ph.D Thesis, University of Nairobi: 228 pp.Google Scholar
  12. Haande, S., A. Ballot, T. Rohrlack, J. Fastner, C. Wiedner & B. Edwardsen, 2007. Diversity of Microcystis aeruginosa isolates (Chroococcales, Cyanobacteria) from East-African water bodies. Archives of Microbiology 188: 15–25.PubMedCrossRefGoogle Scholar
  13. Hammer, U. T., J. Shamess & R. C. Haynes, 1983. The distribution and the abundance of algae in saline lakes of Saskatchewan, Canada. Hydrobiologia 105: 1–26.CrossRefGoogle Scholar
  14. Harper, D. M., R. B. Childress, M. M. Harper, R. R. Boar, P. H. Hickley, S. C. Mills, N. Otieno, T. Drane, E. Vareschi, O. Nasirwa, W. E. Mwatha, J. P. E. C. Darlington & X. Escuté-Gasulla, 2003. Aquatic biodiversity and saline lakes: Lake Bogoria National Reserve, Kenya. Hydrobiologia 500: 259–276.CrossRefGoogle Scholar
  15. Hindák, F., 2006. Three planktonic cyanophytes producing water blooms in Western Slovakia. Czech Phycology, Olomouc 6: 59–67.Google Scholar
  16. Kebede, E., 2002. Phytoplankton distribution in lakes of the Ethiopian Rift Valley. In Tudorancea, C. & W. D. Taylor (eds), Ethiopian Rift Valley Lakes. Biology of Inland Waters Series. Backhuys Publishers, Leiden: 61–93.Google Scholar
  17. Kebede, E. & E. Willén, 1996. Anabaenopsis abijatae, a new cyanophyte from Lake Abijata, an alkaline, saline lake in the Ethiopian Rift Valley. Algological Studies 80: 1–8.Google Scholar
  18. Koenig, R., 2006. The pink death: die-offs of the Lesser Flamingo raise concern. Science 313: 1724–1725.PubMedCrossRefGoogle Scholar
  19. Komárek, J. & K. Anagnostidis, 1998. Cyanoprokaryota, 1. Teil Chroococcales. In Ettl, H., G. Gärtner, H. Heynig & D. Mollenhauer (eds), Süßwasserflora von Mitteleuropa 19/1. Gustav Fischer, Jena: 548 pp.Google Scholar
  20. Komárek, J. & J. Komárková, 2002. Review of the European Microcystis-morphospecies (Cyanoprokaryotes) from nature. Czech Phycology, Olomouc 2: 1–24.Google Scholar
  21. Kotut, K., A. Ballot & L. Krienitz, 2006. Toxic cyanobacteria and their toxins in standing waters of Kenya: implications for water resource use. Journal of Water & Health 4: 233–245.Google Scholar
  22. Kotut, K., A. Ballot, C. Wiegand & L. Krienitz, 2010. Toxic cyanobacteria at Nakuru sewage oxidation ponds—a potential threat to wildlife. Limnologica 40: 47–53.Google Scholar
  23. Krienitz, L. & K. Kotut, 2010. Fluctuating algal food populations and the occurrence of Lesser Flamingos (Phoeniconaias minor) in three Kenyan Rift Valley lakes. Journal of Phycology 46: 1088–1096.CrossRefGoogle Scholar
  24. Krienitz, L., A. Ballot, C. Wiegand, K. Kotut, G. A. Codd & S. Pflugmacher, 2002. Cyanotoxin-producing bloom of Anabaena flos-aquae, Anabaena discoidea and Microcystis aeruginosa (Cyanobacteria) in Nyanza Gulf of Lake Victoria, Kenya. Journal of Applied Botany 76: 179–183.Google Scholar
  25. Krienitz, L., A. Ballot, K. Kotut, C. Wiegand, S. Pütz, J. S. Metcalf, J. S., G. A. Codd & S. Pflugmacher, 2003. Contribution of hot spring cyanobacteria to the mysterious deaths of Lesser Flamingos at Lake Bogoria, Kenya. FEMS Microbiology Ecology 43: 141–148.Google Scholar
  26. Lugomela, C., H. B. Pratap & Y. D. Mgaya, 2006. Cyanobacteria blooms—a possible cause of mass mortality of Lesser Flamingos in Lake Manyara and Lake Big Momela, Tanzania. Harmful Algae 5: 534–541.CrossRefGoogle Scholar
  27. Motelin, G., R. Thampy & D. Doros, 2000. An ecotoxicological study of the potential roles of metals, pesticides and algal toxins on the 1993/5 Lesser Flamingo mass die-offs in Lake Bogoria and Nakuru, Kenya; and the health status of the same species of birds in the Rift Valley Lakes during the 1990s. In Proceedings of the East African Environmental Forum, Nairobi, May 11–12, 2000.Google Scholar
  28. Ndetei, R. & V. S. Muhandiki, 2005. Mortality of lesser flamingos in Kenyan Rift Valley saline lakes and the implications for sustainable management of the lakes. Lakes & Reservoirs: Research and management 10: 51–58.CrossRefGoogle Scholar
  29. Ochumba, P. B. O. & D. I. Kibaara, 1989. Observations on blue-green algal blooms in the open waters of Lake Victoria, Kenya. African Journal of Ecology 27: 23–34.CrossRefGoogle Scholar
  30. Oduor, S. O. & M. Schagerl, 2007. Phytoplankton photosynthetic characteristics in three Kenyan Rift Valley saline-alkaline lakes. Journal of Plankton Research 29: 1041–1050.CrossRefGoogle Scholar
  31. Okello, W., V. Ostermaier, C. Portmann, K. Gademann & R. Kurmayer, 2010a. Spatial isolation favours the divergence in microcystin net production by Microcystis in Ugandan freshwater lakes. Water Research 44: 2803–2814.PubMedCrossRefGoogle Scholar
  32. Okello, W., C. Portmann, M. Erhard, K. Gademann & R. Kurmayer, 2010b. Occurrence of microcystin-producing cyanobacteria in Ugandan freshwater habitats. Environmental Toxicology 25: 367–380.PubMedCrossRefGoogle Scholar
  33. Ostenfeld, C. H., 1908. Phytoplankton aus dem Victoria Nyanza. Engler’s Botanische Jahrbücher 41: 330–350.Google Scholar
  34. Otsuka, S., S. Suda, R. Li, M. Watanabe, H. Oyaizu, S. Matsumoto & M. M. Watanabe, 1999. Characterization of morphospecies and strains of the genus Microcystis (Cyanobacteria) for a reconsideration of species classification. Phycological Research 47: 189–197.CrossRefGoogle Scholar
  35. Schagerl, M. & S. O. Oduor, 2008. Phytoplankton community relationship to environmental variables in three Kenyan Rift Valley saline-alkaline lakes. Marine & Freshwater Research 59: 125–136.CrossRefGoogle Scholar
  36. Sekadende, B. C., T. J. Lyimo & R. Kurmayer, 2005. Microcystin production by cyanobacteria in the Mwanza Gulf (Lake Victoria, Tanzania). Hydrobiologia 543: 299–304.CrossRefGoogle Scholar
  37. Semyalo, R., T. Rohrlack, D. Kayiira, Y. S. Kizito, S. Byarujali, G. Nyakairu & P. Larsson, 2011. On the diet of Nile tilapia in two eutrophic tropical lakes containing toxin producing cyanobacteria. Limnologica 41: 30–36.Google Scholar
  38. Stephens, E. L., 1948. Microcystis toxica sp. nov. a poisonous alga from the Transvaal and Orange Free State. Hydrobiologia 1: 14.CrossRefGoogle Scholar
  39. Stewart, I., A. A. Seawright & G. R. Shaw, 2008. Cyanobacterial poisoning in livestock, wild mammals and birds–an overview. In Kenneth, H. H. (ed.), Cyanobacterial Harmful Algal Blooms: State of the Science and Research Needs. Springer, Heidelberg: 613–638.CrossRefGoogle Scholar
  40. Vareschi, E., 1978. The ecology of Lake Nakuru (Kenya) I. Abundance and feeding of the Lesser Flamingo. Oecologia 32: 11–35.CrossRefGoogle Scholar
  41. Wiegand, C. & S. Pflugmacher, 2005. Ecotoxicological effects of selected cyanobacterial secondary metabolites a short review. Toxicology & Applied Pharmacology 203: 201–218.CrossRefGoogle Scholar
  42. Wilson, A. E., O. Sarnelle, B. A. Neilan, T. P. Salmon, M. M. Gehringer & M. E. Hay, 2005. Genetic variation of the bloom-forming cyanobacterium Microcystis aeruginosa within and among lakes: implications for harmful algal blooms. Applied Environmental Microbiology 71: 6126–6133.CrossRefGoogle Scholar
  43. Wilson, M. R., J. Gaines & R. P. Hill, 2008. Neuromarketing and Consumer Free Will. Journal of Consumer Affairs 42(3): 389–410.CrossRefGoogle Scholar
  44. Wood, R. B. & J. F. Talling, 1988. Chemical and algal relationships in a salinity series of Ethiopian inland water. Hydrobiologia 158: 29–67.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Plant and Microbial Sciences DepartmentKenyatta University NairobiNairobiKenya
  2. 2.Leibniz-Institute of Freshwater Ecology and Inland FisheriesStechlinGermany

Personalised recommendations