, Volume 664, Issue 1, pp 119–133 | Cite as

Spatio-temporal variation of the zooplankton community in a tropical caldera lake with intensive aquaculture (Lake Taal, Philippines)

  • Rey Donne S. Papa
  • Macrina T. Zafaralla
  • Reiner Eckmann
Primary research paper


Zooplankton were collected from Lake Taal between January and December 2008 in order to test for differences in species composition and abundance between a lake basin with intensive fish cage (FC) aquaculture and an open water area without FCs. Most species showed similar patterns of occurrence in both basins while having differences in abundance. Several rotifer species were more abundant in FC sites most of the year, while for microcrustaceans higher abundances in FC sites only happened during the first 2 months. Their distribution is attributed to the presence of higher nutrient levels in FC sites as well as wind-induced basin-wide water movements during the different monsoon seasons which disperse plankton and nutrients from FC sites to other parts of the lake. Zooplanktonic indicators, such as the BrachionusTrichocerca quotient (Q B/T) and the ratio of calanoids to cladocerans and cyclopoids, clearly demonstrate the eutrophic state of the lake. A comparison with previous studies suggests that the lake was already eutrophic prior to the introduction of aquaculture in the 1970s. The trophic conditions in Lake Taal may be attributed to the lakes’ tropical and volcanic nature, with productivity further enhanced by increased nutrient input from aquaculture.


Atelomixis Sardinella tawilis Monsoon seasons BrachionusTrichocerca quotient 



We would like to acknowledge Mrs. Amy-Jane Beer for language editing, the Philippine Atmospheric, Geophysical and Astronomical Services Administration (PAGASA) Weather Station in Tanauan City and the Batangas Provincial Government Environment and Natural Resources Office (PGENRO) for providing secondary data. The German Academic Exchange Service (DAAD), Tonolli Fund Postgraduate Fellowship of the International Society of Limnology (SIL), Philippine Commission on Higher Education (CHED) and the University of Santo Tomas (UST) provided funds to the first author to conduct this research. This study was completed while the first author was at the Limnological Institute of the University of Konstanz as a German Academic Exchange Service (DAAD) Research Fellow.


  1. Adrian, R., 1997. Calanoid–cyclopoid interactions: evidence from an 11-year field study in a eutrophic lake. Freshwater Biology 38: 315–325.CrossRefGoogle Scholar
  2. Alcañices, M. M., R. C. Pagulayan & A. C. Mamaril Sr., 2001. Impact assessment of cage culture in Lake Taal, Philippines. In Santiago, C. B., M. L. Cuvin-Aralar & Z. U. Basiao (eds), Conservation and Ecological Management of Philippine Lakes in Relation to Fisheries and Aquaculture. SEAFDEC, PCAMRD and BFAR, Quezon City: 153 pp.Google Scholar
  3. Amarasinghe, P. B., M. G. Ariyarantne, T. Chitapalapong & J. Vijverberg, 2008. Production, Biomass and Productivity of Copepods and Cladocerans in Tropical Asian Water Bodies and the Carrying Capacity for Zooplanktivorous Fish. In Schiemer, F., D. Simon, U. S. Amarasinghe & J. Moreau (eds), Aquatic Ecosystems and Development: Comparative Asian Perspectives. Biology of Inland Waters Series. Backhuys Publishers, Leiden: 173–194.Google Scholar
  4. Aypa, S. M., S. Ingthamjitr, U. S. Amarasinghe, D. Simon & C. De Jesus, 2008. Fish cage culture in Asian lakes and reservoirs: potentials and constraints. In Schiemer, F., D. Simon, U. S. Amarasinghe & J. Moreau (eds), Aquatic Ecosystems and Development: Comparative Asian Perspectives. Biology of Inland Waters Series. Backhuys Publishers, Leiden: 305–338.Google Scholar
  5. Borges, P., S. Train, J. Dias & C. Bonecker, 2010. Effects of fish farming on plankton structure in a Brazilian tropical reservoir. Hydrobiologia 649: 279–291.CrossRefGoogle Scholar
  6. Dussart, B. H. & D. Defaye, 2001. Introduction to the Copepoda. Backhuys Publishers, Leiden.Google Scholar
  7. Fernando, C. H., 1980. The species and size composition of tropical freshwater zooplankton, with special reference to the oriental region (South East Asia). Internationale Revue der Gesamten Hydrobiologie und Hydrogeographie 65: 411–425.CrossRefGoogle Scholar
  8. Fernando, C. H., 2002. A Guide to Tropical Freshwater Zooplankton – Identification, Ecology and Impact on Fisheries. Backhuys Publishers, Leiden.Google Scholar
  9. Gliwicz, Z. M., 1999. Predictability of seasonal and diel events in tropical and temperate lakes and reservoirs. In Tundisi, J. G. & M. Straskraba (eds), Theoretical Reservoir Ecology and Its Applications. International Institute of Ecology, Brazilian Academy of Sciences and Backhuys Publishers, Leiden: 99–124.Google Scholar
  10. Golterman, H. L., 1973. Natural phosphate sources in relation to phosphate budgets: a contribution to the understanding of eutrophication. Water Research 7: 3–17.CrossRefGoogle Scholar
  11. Gunkel, G. & C. Beulker, 2009. Limnology of the Crater Lake Cuicocha, Ecuador, a cold water tropical lake. International Review of Hydrobiology 94: 103–125.CrossRefGoogle Scholar
  12. Hakanson, L., 1980. An ecological risk index for aquatic pollution-control – a sedimentological approach. Water Research 14: 975–1001.CrossRefGoogle Scholar
  13. Hallare, A. V., P. A. Factor, E. K. Santos & H. Hollert, 2009. Assessing the impact of fish cage culture on Taal Lake (Philippines) water and sediment quality using the zebrafish embryo assay. Philippine Journal of Science 138: 91–104.Google Scholar
  14. Hart, R. C., 1985. Seasonality of aquatic invertebrates in low-latitude and southern hemisphere inland waters. Hydrobiologia 125: 151–178.CrossRefGoogle Scholar
  15. Ka, S., M. Pagano, N. Ba, M. Bouvy, C. Leboulanger, R. Arfi, O. T. Thiaw, E. H. M. Ndour, D. Corbin, D. Defaye, C. Cuoc & E. Kouassi, 2006. Zooplankton distribution related to environmental factors and phytoplankton in a shallow tropical lake (Lake Guiers, Senegal, West Africa). International Review of Hydrobiology 91: 389–405.CrossRefGoogle Scholar
  16. Kiefer, F., 1939. von der Wallacea-Expedition gesammelten Arten der Gattungen Thermocyclops Kiefer. Internationale Revue der gesamten Hydrobiologie und Hydrographie 39: 54–74.CrossRefGoogle Scholar
  17. Larson, G. L., R. Hoffman, C. D. Mcintire, G. Lienkaemper & B. Samora, 2009. Zooplankton assemblages in montane lakes and ponds of Mount Rainier National Park, Washington State, USA. Journal of Plankton Research 31(3): 273–285.CrossRefGoogle Scholar
  18. Lewis Jr., W. M., 1979. Zooplankton Community Analysis: Studies on a Tropical Ecosystem. Springer, New York.Google Scholar
  19. Lewis Jr., W. M., 1984. A five-year record of temperature, mixing, and stability for a tropical lake (Lake Valencia, Venezuela). Archiv fur Hydrobiologie 104: 337–343.Google Scholar
  20. Lewis Jr., W. M., 1996. Tropical lakes: how latitude makes the difference. In Schiemer, F. & K. T. Boland (eds), Perspectives in Tropical Limnology. SPB Academic Publishing, Amsterdam: 43–64.Google Scholar
  21. Lewis Jr., W. M., 2000. Basis for the protection and management of tropical lakes. Lakes and Reservoirs: Research and Management 5: 35–48.CrossRefGoogle Scholar
  22. Mamaril Sr., A. C., 1986. Zooplankton guide to Philippine flora and fauna. NRMC and UP Diliman, Quezon City. 268 pp.Google Scholar
  23. Mamaril Sr., A. C., 2001. Translocation of the Clupeid Sardinella Tawilis to another lake in the Philippines: a proposal and ecological considerations. In Santiago, C. B., M. L. Cuvin-Aralar & Z. U. Basiao (eds), Conservation and Ecological Management of Philippine Lakes in Relation to Fisheries and Aquaculture. SEAFDEC, PCAMRD and BFAR, Quezon City: 133–147.Google Scholar
  24. Mamaril Sr., A. C. & C. H. Fernando, 1978. Freshwater Zooplankton of the Philippines: Rotifera, Cladocera and Copepoda. Natural and Applied Science Bulletin 30: 109–221.Google Scholar
  25. Mengestou, S. & C. H. Fernando, 1991. Seasonality and abundance of some dominant crustacean zooplankton in Lake Awasa, a tropical rift valley lake in Ethiopia. Hydrobiologia 226: 137–152.CrossRefGoogle Scholar
  26. Papa, R. D. S., R. C. Pagulayan & A. E. J. Pagulayan, 2008. Zooplanktivory in the endemic freshwater sardine, Sardinella tawilis (Herre 1927) of Taal Lake, the Philippines. Zoological Studies 47: 535–543.Google Scholar
  27. Perez, T., E. E. Enriquez, R. D. Guerrero Iii, D. Simon & F. Schiemer, 2008. Catchment characteristics, hydrology, limnology and socio-economic features of Lake Taal, Philippines. In Schiemer, F., D. Simon, U. S. Amarasinghe & J. Moreau (eds), Aquatic Ecosystems and Development: Comparative Asian Perspectives. Biology of Inland Waters Series. Backhuys Publishers, Leiden: 63–80.Google Scholar
  28. Petersen, F., 2007. An Illustrated Key to the Philippine Freshwater Zooplankton. Including Some Brackish Water Species from Laguna De Bay. With Ecological Notes.Google Scholar
  29. Pinto-Coelho, R., B. Pinel-Alloul, G. Méthot & K. E. Havens, 2005. Crustacean zooplankton in lakes and reservoirs of temperate and tropical regions: variation with trophic status. Canadian Journal of Fisheries and Aquatic Sciences 62: 348–361.CrossRefGoogle Scholar
  30. Ramos, E. G., 2002. Origin and geologic features of Taal Lake, Philippines. Aquatic Ecosystem Health & Management 5: 155–162.CrossRefGoogle Scholar
  31. Rinke, K., A. M. R. Huber, S. Kempke, M. Eder, T. Wolf, W. N. Probst & K. O. Rothhaupt, 2009. Lake-wide distributions of temperature, phytoplankton, zooplankton, and fish in the pelagic zone of a large lake. Limnology and Oceanography 54: 1306–1322.CrossRefGoogle Scholar
  32. Rott, E., E. I. L. Silva, E. E. Enriquez & S. Ingthamjitr, 2008. Phytoplankton community structure with special reference to species diversity in five tropical Asian Water Bodies. In Schiemer, F., D. Simon, U. Amarasinghe & J. Moreau (eds), Aquatic Ecosystems and Development: Comparative Asian Perspectives. Backhuys Publishers, Leiden: 81–120.Google Scholar
  33. Saksena, D. N., 1987. Rotifers as indicators of water quality. Acta Hydrochimica et Hydrobiologia 15: 481–485.CrossRefGoogle Scholar
  34. Sládecek, V., 1983. Rotifers as indicators of water quality. Hydrobiologia 100: 169–201.CrossRefGoogle Scholar
  35. Sousa, W., J. L. Attayde, E. D. S. Rocha & E. M. Eskinazi-Sant’anna, 2008. The response of zooplankton assemblages to variations in the water quality of four man-made lakes in semi-arid northeastern Brazil. Journal of Plankton Research 30: 699.CrossRefGoogle Scholar
  36. Talling, J. F. & J. Lemoalle, 1998. Ecological Dynamics of Tropical Inland Waters. Cambridge University Press, London.Google Scholar
  37. Tvpl-Pamb, 2009. Taal volcano protected landscape management plan. Batangas: 67.Google Scholar
  38. Unger, P. A. & W. M. Lewis Jr., 1991. Population ecology of a pelagic fish, Xenomelaniris venezuelae (Atherinidae), in Lake Valencia, Venezuela. Ecology 72: 440–456.CrossRefGoogle Scholar
  39. Urabe, J., 1992. Midsummer succession of rotifer plankton in a shallow eutrophic pond. Journal of Plankton Research 14: 851.CrossRefGoogle Scholar
  40. Vijverberg, J., P. B. Amarasinghe, T. Chitapalapong, R. C. Pagulayan, M. G. Ariyarantne, E. R. J. Pamanian, E. I. L. Silva & L. A. J. Nagelkerke, 2008. Structure of microcrustacean zooplankton communities in five tropical Asian water bodies. In Schiemer, F., D. Simon, U. S. Amarasinghe & J. Moreau (eds), Aquatic Ecosystems and Development: Comparative Asian Perspectives. Biology of Inland Waters Series. Backhuys Publishers, Leiden: 153–172.Google Scholar
  41. Vista, A., P. Norris, F. Lupi & R. Bernsten, 2006. Nutrient loading and efficiency of tilapia cage culture in Taal Lake, Philippines. Philippine Agricultural Scientist 89: 48–57.Google Scholar
  42. Walz, N., 1995. Rotifer populations in plankton communities: energetics and life history strategies. Experientia 51: 437–453.CrossRefGoogle Scholar
  43. Wetzel, R. B. & G. E. Likens, 1991. Limnological Analysis. Springer, New York.Google Scholar
  44. White, P., G. N. Christensen, R. Palerud, T. Legovic, W. R. Rosario, N. Lopez, R. R. Regpala, S. Gecek & J. Hernandez, 2007. Environmental Monitoring and Modeling of Aquaculture in Risk Areas of the Philippines (Emma). Final Report, Taal Lake: 39 pp.Google Scholar
  45. White, P. & L. M. San Diego-Mcglone, 2008. Ecosystem-based approach to aquaculture management. Science Diliman 20: 1–10.Google Scholar
  46. Woltereck, R., W. S. Tressler & D. M. Bunag, 1941. Die Seen und Inseln der “Wallacea”-Zwischenregion und ihre endemische Tierwelt. Internationale Revue der gesamten Hydrobiologie und Hydrographie 30: 37–76.CrossRefGoogle Scholar
  47. Zafaralla, M. T., 1992. Limnological Assessment of Taal Lake. Philippine Council for Aquatic and Marine Resources Research and Development, Institute of Biological Sciences UPLB, Los Baños, Laguna: 281 pp.Google Scholar
  48. Zhou, S., X. Huang & Q. Cai, 2009. Temporal and spatial distributions of rotifers in Xiangxi Bay of the Three Gorges Reservoir, China. International Review of Hydrobiology 94: 542–559.CrossRefGoogle Scholar
  49. Zlotnicki, J., Y. Sasai, J. P. Toutain, E. U. Villacorte, A. Bernard, J. P. Sabit, J. M. Gordon, E. G. Corpuz, M. Harada & J. T. Punongbayan, 2009. Combined electromagnetic, geochemical and thermal surveys of Taal Volcano (Philippines) during the period 2005–2006. Bulletin of Volcanology 71: 29–47.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Rey Donne S. Papa
    • 1
  • Macrina T. Zafaralla
    • 2
  • Reiner Eckmann
    • 3
  1. 1.Department of Biological Sciences, Graduate School and Research Center for the Natural SciencesUniversity of Santo TomasManilaPhilippines
  2. 2.Institute of Biological SciencesUniversity of the Philippines Los Baños CollegeLagunaPhilippines
  3. 3.Limnological InstituteUniversity of KonstanzConstanceGermany

Personalised recommendations