, Volume 664, Issue 1, pp 51–67 | Cite as

Phylogeography, genetic structure, and conservation of the endangered Caspian brown trout, Salmo trutta caspius (Kessler, 1877), from Iran

  • Manuel Vera
  • Iman Sourinejad
  • Carmen Bouza
  • Román Vilas
  • Ania Pino-Querido
  • Mohammad R. Kalbassi
  • Paulino Martínez
Primary research paper


The Caspian Sea, the largest inland closed water body in the world, has numerous endemic species. The Caspian brown trout (Salmo trutta caspius) is considered as endangered according to IUCN criteria. Information on phylogeography and genetic structure is crucial for appropriate management of genetic resources. In spite of the huge number of studies carried out in the Salmo trutta species complex across its distribution range, very few data are available on these issues for S. trutta within the Caspian Sea. Mitochondrial (mtDNA control region) and nuclear (major ribosomal DNA internal transcribed spacer 1, ITS-1, and ten microsatellite loci) molecular markers were used to study the phylogeography, genetic structure, and current captive breeding strategies for reinforcement of Caspian trout in North Iranian rivers. Our results confirmed the presence of Salmo trutta caspius in this region. Phylogenetic analysis demonstrated its membership to the brown trout Danubian (DA) lineage. Genetic diversity of Caspian brown trout in Iranian Rivers is comparable to the levels usually observed in sustainable anadromous European brown trout populations. Microsatellite data suggested two main clusters connected by gene flow among river basins likely by anadromous fish. No genetic differences were detected between the hatchery sample and the remaining wild populations. While the current hatchery program has not produced detectable genetic changes in the wild populations, conservation strategies prioritizing habitat improvement and recovering natural spawning areas for enhancing wild populations are emphasized.


Salmo trutta caspius Genetic population structure Phylogeography Conservation Caspian Sea 



We would like to express our gratitude to the manager and staffs of Kelardasht Culture and Breeding Centre of Salmonids, Iran for providing the fish. We thank L. Insua, M. Portela, S. Sánchez, M. López, S. Gómez, M. Otero, and Z. Ghasemi for technical assistance. This research was supported by funding from University of Santiago de Compostela (Spain) and University of Tarbiat Modares (Iran).

Supplementary material

10750_2010_581_MOESM1_ESM.eps (1.4 mb)
Figure S1. Neighbor-Joining tree among the haplotypes found in Iranian Rivers. The numbers indicate the robustness of the branches using Neighbor-Joining (NJ above branch, bootstrap value >50) and Bayesian inference (BI, below branch, Posterior probability >50) (EPS 1.4 MB)


  1. Abdoli, A., 2000. Inland Water Fishes of Iran, 1st ed. Iranian Museum of Nature and Wild Life, Tehran.Google Scholar
  2. Almodovar, A., G. G. Nicola, B. Elvira & J. L. Garcia-Marin, 2006. Introgression variability among Iberian brown trout Evolutionary Significant Units: the influence of local management and environmental features. Freshwater Biology 51: 1175–1187.CrossRefGoogle Scholar
  3. Ayllon, F., P. Moran & E. Garcia-Vazquez, 2006. Maintenance of a small anadromous subpopulation of brown trout (Salmo trutta L.) by straying. Freshwater Biology 51: 351–358.CrossRefGoogle Scholar
  4. Bandelt, H. J., P. Forster & A. Rohl, 1999. Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution 16: 37–48.PubMedGoogle Scholar
  5. Barannik, V., O. Borysova & F. Stolberg, 2004. The Caspian Sea region: environmental change. Ambio 33: 45–51.PubMedGoogle Scholar
  6. Baric, S., A. Riedl, A. Meraner, N. Medgyesy, R. Lackner, B. Pelster & J. Dalla-Via, 2010. Alpine headwater streams as reservoirs of remnant populations of the Danubian clade brown trout. Freshwater biology 55: 866–880.CrossRefGoogle Scholar
  7. Bernatchez, L., 2001. The evolutionary history of brown trout (Salmo trutta L.) inferred from phylogeographic, nested clade, and mismatch analyses of mitochondrial DNA variation. Evolution 55: 351–379.PubMedGoogle Scholar
  8. Bernatchez, L. & A. Osinov, 1995. Genetic diversity of trout (genus Salmo) from its most eastern native range based on mitochondrial-DNA and nuclear gene variation. Molecular Ecology 4: 285–297.PubMedCrossRefGoogle Scholar
  9. Bernatchez, L., R. Guyomard & F. Bonhomme, 1992. DNA sequence variation of the mitochondrial control region among geographically and morphologically remote European brown trout Salmo trutta populations. Molecular Ecology 1: 161–173.PubMedCrossRefGoogle Scholar
  10. Cassens, I., K. Van Waerebeek, P. B. Best, E. A. Crespo, J. Reyes & M. C. Milinkovitch, 2003. The phylogeography of dusky dolphins (Lagenorhynchus obscurus): a critical examination of network methods and rooting procedures. Molecular Ecology 12: 1781–1792.PubMedCrossRefGoogle Scholar
  11. Chapuis, M. P. & A. Estoup, 2007. Microsatellite null alleles and estimation of population differentiation. Molecular Biology and Evolution 24: 621–631.PubMedCrossRefGoogle Scholar
  12. Coad, B. W., 2000. Criteria for assessing the conservation status of taxa (as applied to Iranian freshwater fishes). Biologia 55: 537–555.Google Scholar
  13. Corander, J. & P. Marttinen, 2006. Bayesian identification of admixture events using multilocus molecular markers. Molecular Ecology 15: 2833–2843.PubMedCrossRefGoogle Scholar
  14. Cortey, M. & J. L. Garcia-Marin, 2002. Evidence for phylogeographically informative sequence variation in the mitochondrial control region of Atlantic brown trout. Journal of Fish Biology 60: 1058–1063.CrossRefGoogle Scholar
  15. Cortey, M., C. Pla & J. L. Garcia-Marin, 2004. Historical biogeography of Mediterranean trout. Molecular Phylogenetics and Evolution 33: 831–844.PubMedCrossRefGoogle Scholar
  16. Cortey, M., M. Vera, C. Pla & J. L. Garcia-Marin, 2009. Northern and Southern expansions of Atlantic brown trout (Salmo trutta) populations during the Pleistocene. Biological Journal of the Linnean Society 97: 904–917.CrossRefGoogle Scholar
  17. Dakin, E. E. & J. C. Avise, 2004. Microsatellite null alleles in parentage analysis. Heredity 93: 504–509.PubMedCrossRefGoogle Scholar
  18. Duftner, N., S. Weiss, N. Medgyesy & C. Sturmbauer, 2003. Enhanced phylogeographic information about Austrian brown trout populations derived from complete mitochondrial control region sequences. Journal of Fish Biology 62: 427–435.CrossRefGoogle Scholar
  19. Dumont, H. J., 1998. The Caspian lake: history, biota, structure and function. Limnology and Oceanography 43: 44–52.CrossRefGoogle Scholar
  20. Elmousadik, A. & R. J. Petit, 1996. High level of genetic differentiation for allelic richness among populations of the argan tree Argania spinosa (L) Skeels endemic to Morocco. Theoretical and Applied Genetics 92: 832–839.CrossRefGoogle Scholar
  21. Estoup, A., P. Presa, F. Krieg, D. Vaiman & R. Guyomard, 1993. (CT)(n) and (GT)(n) microsatellites a new class of genetic markers for Salmo trutta L. (brown trout). Heredity 71: 488–496.PubMedCrossRefGoogle Scholar
  22. Excoffier, L., P. E. Smouse & J. M. Quattro, 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131: 479–491.PubMedGoogle Scholar
  23. Fumagalli, L., A. Snoj, D. Jesensek, F. Balloux, T. Jug, O. Duron, F. Brossier, A. J. Crivelli & P. Berrebi, 2002. Extreme genetic differentiation among the remnant populations of marble trout (Salmo marmoratus) in Slovenia. Molecular Ecology 11: 2711–2716.PubMedCrossRefGoogle Scholar
  24. Garza, J. C. & E. G. Williamson, 2001. Detection of reduction in population size using data from microsatellite loci. Molecular Ecology 10: 305–318.PubMedCrossRefGoogle Scholar
  25. Goudet, J., 2001. FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3) [available from].
  26. Hansen, M. M., 2002. Estimating the long-term effects of stocking domesticated trout into wild brown trout (Salmo trutta) populations: an approach using microsatellite DNA analysis of historical and contemporary samples. Molecular Ecology 11: 1003–1015.PubMedCrossRefGoogle Scholar
  27. Hansen, M. M. & L. F. Jensen, 2005. Sibship within samples of brown trout (Salmo trutta) and implications for supportive breeding. Conservation Genetics 6: 297–305.CrossRefGoogle Scholar
  28. Hansen, M. M., E. E. Nielsen, D. E. Ruzzante, C. Bouza & K. L. D. Mensberg, 2000. Genetic monitoring of supportive breeding in brown trout (Salmo trutta L.), using microsatellite DNA markers. Canadian Journal of Fisheries and Aquatic Sciences 57: 2130–2139.CrossRefGoogle Scholar
  29. Hansen, M. M., D. E. Ruzzante, E. E. Nielsen, D. Bekkevold & K. L. D. Mensberg, 2002. Long-term effective population sizes, temporal stability of genetic composition and potential for local adaptation in anadromous brown trout (Salmo trutta) populations. Molecular Ecology 11: 2523–2535.PubMedCrossRefGoogle Scholar
  30. Harley, E. H., 2001. AGARst. A program for calculating allele frequencies, GST and RST from microsatellite data. University of Cape Town, South Africa.Google Scholar
  31. Hillis, D. M. & M. T. Dixon, 1991. Ribosomal DNA: molecular evolution and phylogenetic inference. Quarterly Review of Biology 66: 411–453.PubMedCrossRefGoogle Scholar
  32. Huelsenbeck, J. P. & F. Ronquist, 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754–755.PubMedCrossRefGoogle Scholar
  33. Hynes, R. A., A. Ferguson & M. A. Mccann, 1996. Variation in mitochondrial DNA and post-glacial colonization of north Western Europe by brown trout. Journal of Fish Biology 48: 54–67.CrossRefGoogle Scholar
  34. Jalali, M. A. & B. M. Amiri, 2009. Threatened fishes of the world: Salmo trutta caspius (Kessler, 1877) (Salmoniforms: Salmonidae). Environmental Biology of Fishes 86: 375–376.CrossRefGoogle Scholar
  35. Kheyrandish, A., A. Abdoli, H. Mostafavi, H. Niksirat, M. Naderi & S. Vatandoost, 2010. Age and growth of brown trout (Salmo trutta) in six rivers of the Southern part of Caspian basin. American Journal of Animal and Veterinary Sciences 5: 8–12.CrossRefGoogle Scholar
  36. Kiabi, B. H., A. Abdoli & M. Naderi, 1999. Status of the fish fauna in the South Caspian basin of Iran. Journal of Zoology in the Middle East 18: 57–65.Google Scholar
  37. Koljonen, M. L., J. Tahtinen, M. Saisa & J. Koskiniemi, 2002. Maintenance of genetic diversity of Atlantic salmon (Salmo salar) by captive breeding programmes and the geographic distribution of microsatellite variation. Aquaculture 212: 69–92.CrossRefGoogle Scholar
  38. Konovalov, D. A., C. Manning & M. T. Henshaw, 2004. KINGROUP: a program for pedigree relationship reconstruction and kin group assignments using genetic markers. Molecular Ecology Notes 4: 779–782.CrossRefGoogle Scholar
  39. Laikre, L., A. Antunes, A. Apostolidis, P. Berrebi, A. Duguid, A. Ferguson, J. L. Garcia-Marin, R. Guyomard, M. M. Hansen, K. Hindar, M. L. Koljonen, C. Largiader, P. Martinez, E. E. Nielsen, S. Palm, D. Ruzzante, N. Ryman & C. Triantaphyllidis, 1999. Conservation genetic management of brown trout (Salmo trutta L.) in Europe. Report by the concerted action on identification, management and exploitation of genetic resources in the brown trout (Salmo trutta) (“TROUTCONCERT”; EU FAIR CT97-3882). ISBN 87-987732-0-8 1999.Google Scholar
  40. Langella, O., 2002. POPULATIONS 1.2.26. Logiciel de Génétique de populations. Laboratoire populations, génétique et évolution. CNRS UPR 9034. Gif-sur-Yvette. France [available from].
  41. Luikart, G., F. W. Allendorf, J. M. Cornuet & W. B. Sherwin, 1998. Distortion of allele frequency distributions provides a test for recent population bottlenecks. Journal of Heredity 89: 238–247.PubMedCrossRefGoogle Scholar
  42. Machado-Schiaffino, G., E. Dopico & E. Garcia-Vazquez, 2007. Genetic variation losses in Atlantic salmon stocks created for supportive breeding. Aquaculture 264: 59–65.CrossRefGoogle Scholar
  43. Martinez, P., C. Bouza, J. Castro, M. Hermida, B. G. Pardo & L. Sanchez, 2007. Analysis of a secondary contact between divergent lineages of brown trout Salmo trutta L. from Duero basin using microsatellites and mtDNA RFLPs. Journal of Fish Biology 71: 195–213.CrossRefGoogle Scholar
  44. Meraner, A., S. Baric, B. Pelster & J. Dalla-Via, 2007. Trout (Salmo trutta) mitochondrial DNA polymorphism in the centre of the marble trout distribution area. Hydrobiologia 579: 337–349.CrossRefGoogle Scholar
  45. Nei, M., 1987. Molecular evolutionary genetics. Columbia University Press, New York.Google Scholar
  46. Nei, M. & F. Tajima, 1981. DNA polymorphism detectable by restriction endonucleases. Genetics 97: 145–163.PubMedGoogle Scholar
  47. Niksirat, H. & A. Abdoli, 2009. On the status of the critically endangered Caspian brown trout, Salmo trutta caspius, during recent decades in the southern Caspian Sea basin. Zoology in the Middle East 46: 55–60.Google Scholar
  48. Noges, P., K. Kangur, T. Noges, A. Reinart, H. Simola & M. Viljanen, 2008. Highlights of large lake research and management in Europe. Hydrobiologia 599: 259–276.CrossRefGoogle Scholar
  49. Novikov, G. G., A. V. Semenova, A. N. Stroganov & V. Tagizade, 2008. Allozyme variability in the populations of brown trout Salmo trutta from the rivers of Iran. Journal of Ichthyology 48: 421–426.CrossRefGoogle Scholar
  50. O’connell, M. & J. M. Wright, 1997. Microsatellite DNA in fishes. Reviews in Fish Biology and Fisheries 7: 331–363.CrossRefGoogle Scholar
  51. Osinov, A. G., 2009. Iranian samples of brown trout Salmo trutta or rainbow trout Oncorhynchus mykiss: comparison of evidence from allozyme and mitochondrial DNA control region sequence analysis. Journal of Ichthyology 49: 825–828.CrossRefGoogle Scholar
  52. Osinov, A. G. & L. Bernatchez, 1996. “Atlantic” and “Danube” phylogenetic groups of the sea trout Salmo trutta complex: genetic divergence, evolution, protection. Voprosy Ikhtiologii 36: 762–786.Google Scholar
  53. Page, R. D. M., 1996. TreeView: an application to display phylogenetic trees on personal computers. Computer Applications in the Biosciences 12: 357–358.PubMedGoogle Scholar
  54. Pino-Querido, A., M. Hermida, M. Vilariño, C. Bouza & P. Martinez, 2010. Statistical properties and performance of pairwise relatedness estimators using turbot (Scophthalmus maximus L.) family data. Aquaculture Research 41: 528–534.CrossRefGoogle Scholar
  55. Piry, S., G. Luikart & J. M. Cornuet, 1999. BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. Journal of Heredity 90: 502–503.CrossRefGoogle Scholar
  56. Posada, D. & K. A. Crandall, 2001. Intraspecific gene genealogies: trees grafting into networks. Trends in Ecology & Evolution 16: 37–45.CrossRefGoogle Scholar
  57. Presa, P. & R. Guyomard, 1996. Conservation of microsatellites in three species of salmonids. Journal of Fish Biology 49: 1326–1329.Google Scholar
  58. Presa, P., B. G. Pardo, P. Martinez & L. Bernatchez, 2002. Phylogeographic congruence between mtDNA and rDNA ITS markers in brown trout. Molecular Biology and Evolution 19: 2161–2175.PubMedGoogle Scholar
  59. Ramezani, H., 2009. Effects of different protein and energy levels on growth performance of Caspian brown trout, Salmo trutta caspius (Kessler, 1877). Journal of Fisheries and Aquatic Science 4: 203–209.CrossRefGoogle Scholar
  60. Rohlf, F., 1993. NTSYS-pc. Numerical taxonomy and multivariate analysis system, Version 2.1. Setauket, New York.Google Scholar
  61. Ronquist, F. & J. P. Huelsenbeck, 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574.PubMedCrossRefGoogle Scholar
  62. Rousset, F., 1997. Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145: 1219–1228.PubMedGoogle Scholar
  63. Rousset, F., 2008. GENEPOP ‘007: a complete re-implementation of the GENEPOP software for Windows and Linux. Molecular Ecology Resources 8: 103–106.CrossRefGoogle Scholar
  64. Ruzzante, D. E., M. M. Hansen & D. Meldrup, 2001. Distribution of inbreeding coefficients, relatedness and influence of stocking on native anadromous brown trout (Salmo trutta) population structure. Molecular Ecology 10: 2107–2118.PubMedCrossRefGoogle Scholar
  65. Sambrook, J., E. F. Fritsch & T. Maniatis, 1989. Molecular cloning: a laboratory manual. Cold Spring Harbor, New York.Google Scholar
  66. Sanz, N., M. Cortey, C. Pla & J. L. Garcia-Marin, 2006. Hatchery introgression blurs ancient hybridization between brown trout (Salmo trutta) lineages as indicated by complementary allozymes and mtDNA markers. Biological Conservation 130: 278–289.CrossRefGoogle Scholar
  67. Sanz, N., R. M. Araguas, R. Fernandez, M. Vera & J. L. Garcia-Marin, 2009. Efficiency of markers and methods for detecting hybrids and introgression in stocked populations. Conservation Genetics 10: 225–236.CrossRefGoogle Scholar
  68. Sarvi, K., H. Niksirat, B. M. Amiri, S. M. Mirtorabi, G. R. Rafiee & M. Bakhtiyari, 2006. Cryopreservation of semen from the endangered Caspian brown trout (Salmo trutta caspius). Aquaculture 256: 564–569.CrossRefGoogle Scholar
  69. Schneider, S., D. Roessli & L. Excoffier, 2000. Arlequin, Version 2.000: a software for population genetics data analysis. G.A.B. Laboratory). University of Geneva, Switzerland, Geneva.Google Scholar
  70. Sedgwick, S. D., 1995. Trout farming handbook. Alden Press, Oxford.Google Scholar
  71. Snoj, A., I. Bogut & S. Susnik, 2008. Evidence of a genetically distinct population of Vrljika softmouth trout Salmo obtusirostris Heckel evolved by vicariance. Journal of Fish Biology 72: 1945–1959.CrossRefGoogle Scholar
  72. Tamura, K., J. Dudley, M. Nei & S. Kumar, 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24: 1596–1599.PubMedCrossRefGoogle Scholar
  73. Van Oosterhout, C., W. F. Hutchinson, D. P. M. Wills & P. Shipley, 2004. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes 4: 535–538.CrossRefGoogle Scholar
  74. Vera, M., M. Cortey, N. Sanz & J. L. Garcia-Marin, 2010a. Maintenance of an endemic lineage of brown trout (Salmo trutta) within the Duero river basin. Journal of Zoological Systematics and Evolutionary Research 48: 181–187.CrossRefGoogle Scholar
  75. Vera, M., N. Sanz, M. M. Hansen, A. Almodovar & J. L. Garcia-Marin, 2010b. Population and family structure of brown trout, Salmo trutta, in a Mediterranean stream. Journal of Marine and Freshwater research 61: 676–685.CrossRefGoogle Scholar
  76. Vilas, R., C. Bouza, J. Castro, A. López & P. Martinez, 2010. Management units of brown trout from Galicia (NW: Spain) based on spatial genetic structure analysis. Conservation Genetics 11: 897–906.CrossRefGoogle Scholar
  77. Walsh, P. S., D. A. Metzger & R. Higuchi, 1991. CHELEX-100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10: 506–513.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Manuel Vera
    • 1
  • Iman Sourinejad
    • 1
    • 2
  • Carmen Bouza
    • 1
  • Román Vilas
    • 1
  • Ania Pino-Querido
    • 1
  • Mohammad R. Kalbassi
    • 3
    • 4
  • Paulino Martínez
    • 1
  1. 1.Departamento de Genética. Facultad de VeterinariaUniversidad de Santiago de CompostelaLugoSpain
  2. 2.Department of Fisheries Science, Faculty of Agriculture and Natural ResourcesUniversity of HormozganBandar AbbasIran
  3. 3.Department of Fisheries, Faculty of Marine SciencesTarbiat Modares UniversityNoorIran
  4. 4.Research and Development Center for Biotechnology (RDCB)Tarbiat Modares UniversityTehranIran

Personalised recommendations