Skip to main content

Advertisement

Log in

Data-oriented analyses of ciliate foraging behaviors

  • ZOOPLANKTON ECOLOGY
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Optimal foraging theory states that natural selection makes foragers efficient food harvesters and maximizing a colony’s energy intake. This study presumed that the ciliates foraging trajectories follow optimal foraging theory, verified the presumption and discover specific rules and patterns hidden in the ciliate’s trajectories data using methodologies of statistical, cluster analyses, and decision tree analysis. This study examined the foraging behaviors of ciliates by video recordings and quantitative analyses of movement trajectories under four nourishment conditions (low, medium, high, and highest concentrations). Similar biological studies adopt statistical analyses to certain locomotion indices to determine the responses of plankton to various aquatic environments. In addition to statistical analyses, cluster analysis was used in this study to confirm the observations of the statistical analyses. The statistical analysis and cluster analysis results in this study revealed two distinct groups of trajectories or behaviors, which matched the optimal foraging theory. Decision tree analysis was then applied to acquire objective information regarding foraging behaviors, and further detailed the foraging behaviors with explicit classification rules using locomotion indices. The production rules can play an alternative role to assess the sustainability of an aquatic environment in terms of algae concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alvarez, M. C. & L. A. Fuiman, 2003. Exposure to atrazine at environmentally realistic levels affects survival potential of a marine fish larva. Poster presentation, SETAC meeting, Austin.

  • Baumont, G., F. Ménage, J. R. Schneiter, A. Spurgin & A. Vogel, 2000. Quantifying human and organizational factors in accident management using decision trees: the HORAAM method. Reliability Engineering and System Safety 70: 113–124.

    Article  Google Scholar 

  • Berry, M. J. & G. S. Linoff, 1999. Mastering Data Mining: The Art and Science of Customer Relationship Management. Wiley, New York.

    Google Scholar 

  • Bohren, B. F., M. Hadzikadic & E. N. Hanley Jr., 1995. Extracting knowledge from large medical databases: an automated approach. Computers and Biomedical Research 28: 191–210.

    Article  PubMed  CAS  Google Scholar 

  • Buskey, E. J., 1984. Swimming pattern as an indicator of the roles of copepod sensory systems in the recognition of food. Marine Biology 79: 165–175.

    Article  Google Scholar 

  • Chae, Y. M., H. S. Kim, K. C. Tark, H. J. Park & S. H. Ho, 2003. Analysis of healthcare quality indicator using data mining and decision support system. Expert Systems with Applications 24: 167–172.

    Article  Google Scholar 

  • Cox, B., T. Kislinger & A. Emili, 2005. Integrating gene and protein expression data: pattern analysis and profile mining. Methods 35: 303–314.

    Article  PubMed  CAS  Google Scholar 

  • Chang, Y. C., P. C. Lai & M. T. Lee, 2007. An integrated approach for operational knowledge acquisition of refuse incinerators. Expert Systems with Applications 33: 413–419.

    Article  Google Scholar 

  • DeVantier, L. M., G. De’Ath, T. J. Done & E. Turak, 1998. Ecological assessment of a complex natural system: a case study from the Great Barrier Reef. Ecological Applications 8: 480–496.

    Article  Google Scholar 

  • Erlandsson, J. & V. Kostylev, 1995. Trail following, speed and fractal dimension of movement in a marine prosobranch, Littorina littorea, during a mating and a non-mating season. Marine Biology 122: 87–94.

    Article  Google Scholar 

  • Giordana, A. & F. Neri, 1995. Search-intensive concept induction. Evolutionary Computation 3: 375–416.

    Article  Google Scholar 

  • Greene, D. P. & S. F. Smith, 1993. Competition-based induction of decision models from examples. Machine Learning 13: 229–257.

    Article  Google Scholar 

  • Han, J. & M. Kamber, 2001. Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers, Cambridge.

    Google Scholar 

  • Jakobsen, H. H., E. Halvorsen, B. W. Hansen & A. W. Visser, 2005. Effects of prey motility and concentration on feeding in Acartia tonsa and Temora longicornis: the importance of feeding modes. Journal of Plankton Research 27: 775–785.

    Article  Google Scholar 

  • Jourdam, L., C. Dhaenens, E. G. Talbi & S. Gallina, 2002. A data mining approach to discover genetic and environmental factors involved in multifactorial diseases. Knowledge-Based Systems 15: 235–242.

    Article  Google Scholar 

  • Kirchner, K., K. H. Tölle & J. Krieter, 2004. The analysis of simulated sow herd datasets using decision tree technique. Computers and Electronics in Agriculture 42: 111–127.

    Article  Google Scholar 

  • Kudo, M. & J. Skalansky, 2000. Comparison of algorithms that select features for pattern classifiers. Pattern Recognition 33: 25–41.

    Article  Google Scholar 

  • Lindsay, S. M. & R. G. Vogt, 2004. Behavioral responses of newly hatched zebrafish (Danio rerio) to amino acid chemostimulants. Chemical Senses 29: 93–100.

    Article  PubMed  Google Scholar 

  • MacQueen, J., 1967. Some methods for classification and analysis of multivariate observations. In Proceedings of 5th Berkeley symposium on mathematical statistics and probability, Vol. 1. University of California Press, Berkeley: 281–297.

  • Mandelbrot, B. B., 1982. The Fractal Geometry of Nature. W.H. Freeman and Company, San Francisco.

    Google Scholar 

  • Mandelbrot, B. B., 1967. How long is the Coast of Britain? Statistical self-similarity and fractal dimension. Science 155: 636–638.

    Article  Google Scholar 

  • Mitchell, R. S., R. A. Sherlock & L. A. Smith, 1996. An investigation into the use of machine learning for determining estrus in cows. Computers and Electronics in Agriculture 15: 195–213.

    Article  Google Scholar 

  • Nagelkerken, I., G. Velde, M. W. Gorissen, G. J. Meijer, T. Hof & C. Hartog, 2000. Importance of mangroves, seagrass beds and the shallow coral reef as a nursery for important coral reef fishes, using a visual census technique. Estuarine, Coastal and Shelf Science 51: 31–44.

    Article  Google Scholar 

  • Pasternak, Z., B. Blasius, A. Abelson & Y. Achituv, 2006. Host-finding behaviour and navigation capabilities of symbiotic zooxanthellae. Coral Reefs 25: 201–207.

    Article  Google Scholar 

  • Quinlan, J. R., 1986. Induction of decision trees. Machine Learning 1: 81–106.

    Google Scholar 

  • Seuront, L., J. S. Hwang, L. C. Tseng, F. G. Schmitt, S. Souissi & C. K. Wong, 2004. Individual variability in the swimming behavior of the sub-tropical copepod Oncaea venusta (Copepoda: Poecilostomatoida). Marine Ecology Progress Series 283: 199–217.

    Article  Google Scholar 

  • Traniello, J. F. A., 1989. Foraging strategies of ants. Annual Review of Entomology 34: 191–210.

    Article  Google Scholar 

  • Ueda, T., S. Koya & Y. K. Maruyama, 1999. Dynamic patterns in the locomotion and feeding behaviors by the placozoan Trichoplax adhaerence. BioSystems 54: 65–70.

    Article  PubMed  CAS  Google Scholar 

  • Vandromme, P., F. G. Schmitt, S. Souissi, E. J. Buskey, J. R. Strickler, C.-H. Wu & J.-S. Hwang, 2010. Symbolic analysis of plankton swimming trajectories: case study of Strobilidium sp. (Protista) helical walking under various food conditions. Zoological Studies 49(3): 289–303.

    Google Scholar 

  • Visser, A. W. & U. H. Thygesen, 2003. Random motility of plankton: diffusive and aggregative contributions. Jounral of Plankton Research 25: 1157–1168.

    Article  Google Scholar 

  • Visser, A. W. & T. Kiørboe, 2006. Plankton motility patterns and encounter rates. Oecologia 148: 538–546.

    Article  PubMed  Google Scholar 

  • Witten, I. H. & E. Frank, 2005. Data Mining: Practical Machine Learning Tools and Techniques, 2nd ed. Morgan Kaufmann, San Francisco.

    Google Scholar 

  • Wu, C.-H., H.-U. Dahms, E. J. Buskey, J. R. Strickler & J.-S. Hwang, 2010. Behavioral interactions of the copepod Temora turbinata with potential ciliate prey. Zoological Studies 49(2): 157–168.

    Google Scholar 

  • Yen, J., 1988. Directionality and swimming speeds in predator-prey and male-female interactions of Euchaeta rimana, a subtropical marine copepod. Bulletin of Marine Science 43: 395–403.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the editors and reviewers for their helpful comments. This research was supported by grants NSC 98-2621-B-019-001-MY3 and NSC 99-2611-M-019-009 from the National Science Council and from the National Taiwan Ocean University (CMBB 97529002A9). The authors also thank Professors J. Rudi Strickler from University of Wisconsin, Milwaukee, USA, and Edward J. Buskey from University of Texas at Austin, USA for their assistance at various stages of the experiment and for constructive suggestions regarding the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng-Tsung Lee.

Additional information

Guest editors: J.-S. Hwang and K. Martens / Zooplankton Behavior and Ecology

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, YC., Yan, JC., Hwang, JS. et al. Data-oriented analyses of ciliate foraging behaviors. Hydrobiologia 666, 223–237 (2011). https://doi.org/10.1007/s10750-010-0548-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-010-0548-5

Keywords

Navigation