, Volume 661, Issue 1, pp 317–327 | Cite as

Seasonal adaptations of Daphnia pulicaria swimming behaviour: the effect of water temperature

  • Joshua J. Ziarek
  • Ai Nihongi
  • Takeyoshi Nagai
  • Marco Uttieri
  • J. Rudi Strickler
Primary research paper


Daphnia swimming behaviour is controlled by a variety of external factors, including light, presence of food and predators. Temperature represents a key driver in the dynamics of Daphnia populations, as well as on their motion. In this study, we have investigated the behavioural adaptations of adult Daphnia pulicaria to two different temperatures, representative of the mean winter (3°C) and summer (22°C) temperatures to which these organisms are exposed to in the real environment. Video observations were conducted both in the presence and in the absence of light to investigate possible day/night modifications in the motion strategy. Analyses of mean speed, velocity power spectral density and trajectory fractal dimension point out specific adaptations that allow D. pulicaria to successfully adjust to the changing conditions of the environment. Independently of the light conditions, in cold waters D. pulicaria swim almost vertically with defined motional frequencies, likely to increase the encounter with food items diluted in the fluid. A similar behaviour is displayed by the animals at summertime temperatures in the presence of light; however, in this case the vertical swimming is coupled with the absence of peaks in the power spectra and might be exploited to avoid predators. In contrast, at 22°C in dark conditions D. pulicaria move horizontally with lateral motions to take advantage of possible patches of phytoplankton. This information sheds new light into the complex and dynamic adaptations of D. pulicaria in response to external stimuli.


Daphnia pulicaria Swimming behaviour Temperature Adaptation 



We would like to recognize the generous donation of the VidAna tracking software by Dr. Michael Hofmann (University of Bonn). M.U. is sincerely grateful to E. Zambianchi and P. Licandro for constructive exchanges.


  1. Baillieul, M. & R. Blust, 1999. Analysis of the swimming velocity of cadmium-stressed Daphnia magna. Aquatic Toxicology 44: 245–254.CrossRefGoogle Scholar
  2. Beklioglu, M., A. G. Gozen, F. Yildirim, P. Zorlu & S. Onde, 2008. Impact of food concentration on diel vertical migration behaviour of Daphnia pulex under fish predation risk. Hydrobiologia 614: 321–327.CrossRefGoogle Scholar
  3. Bendat, S. J. & A. G. Piersol, 1966. Measurements and Analysis of Random Data. John Wiley & Sons, Inc., New York.Google Scholar
  4. Brewer, M. C. & J. N. Coughlin, 1996. Virtual plankton: a novel approach to the investigation of aquatic predator-prey interactions. In Lenz, P. H., D. K. Hartline, J. E. Purcell & D. L. Macmillan (eds), Zooplankton: Sensory Ecology and Physiology. Gordon and Breach, Amsterdam: 425–434.Google Scholar
  5. Buczkowski, S., S. Kyriacos, F. Nekka & L. Cartilier, 1998. The modified box-counting method: analysis of some characteristic parameters. Pattern Recognition 31: 411–418.CrossRefGoogle Scholar
  6. Burns, C. W. & F. H. Rigler, 1967. Comparison of filtering rates of Daphnia rosea in lake water and in suspensions of yeast. Limnology and Oceanography 12: 492–502.CrossRefGoogle Scholar
  7. Castiglione, P., M. Cencini, A. Vulpiani & E. Zambianchi, 1999. Transport in finite size systems: an exit time approach. Chaos 9: 871–879.CrossRefPubMedGoogle Scholar
  8. Curl, H. J., J. T. Hardy & R. Ellermeier, 1972. Spectral absorption of solar radiation in alpine snowfields. Ecology Letters 53: 1189–1194.Google Scholar
  9. Dawidowicz, P. & C. J. Loose, 1992. Metabolic costs during predator induced diel vertical migration of Daphnia. Limnology and Oceanography 37: 1589–1595.CrossRefGoogle Scholar
  10. de Bernardi, R. & R. H. Peters, 1987. Why Daphnia? In Peters, R. H. & R. de Bernardi (eds), Daphnia: Memorie dell’Istituto Italiano di Idrobiologia Dott. Marco de Marchi, Vol. 45. Consiglio Nazionale delle Ricerche, Verbania-Pallanza: 353–366.Google Scholar
  11. Dodson, S. & C. Ramcharan, 1991. Size-specific swimming behavior of Daphnia pulex. Journal of Plankton Research 13: 1367–1379.CrossRefGoogle Scholar
  12. Dodson, S. I., T. Hanazato & P. R. Gorski, 1995. Behavioral responses of Daphnia pulex exposed to carbaryl and Chaoborus kairomone. Environmental Toxicology and Chemistry 14: 43–50.Google Scholar
  13. Dodson, S. I., S. Ryan, R. Tollrien & W. Lampert, 1997. Individual swimming behaviour of Daphnia: effects of food, light and container size in four clones. Journal of Plankton Research 19: 1537–1552.CrossRefGoogle Scholar
  14. Garnier, J. & S. Mourelatos, 1991. Contribution of grazing in phytoplankton overall losses in a shallow French lake. Freshwater Biology 25: 515–523.CrossRefGoogle Scholar
  15. Gerritsen, J., 1982. Behavioral response of Daphnia to rate of temperature change: possible enhancement of vertical migration. Limnology and Oceanography 27: 251–254.CrossRefGoogle Scholar
  16. Gliwicz, Z. M. & P. Maszczyk, 2007. Daphnia growth is hindered by chemical information on predation risk at high but not at low food levels. Oecologia 150: 706–715.CrossRefPubMedGoogle Scholar
  17. Gorski, P. R. & S. I. Dodson, 1996. Free-swimming Daphnia pulex can avoid following Stokes’ law. Limnology and Oceanography 41: 1815–1821.CrossRefGoogle Scholar
  18. Heugens, E. H. W., T. Jager, R. Creyghton, M. H. S. Kraak, A. J. Hendriks, N. M. Van Straalen & W. Admiraal, 2003. Temperature-dependent effects of cadmium on Daphnia magna: accumulation versus sensitivity. Environmental Science & Technology 37: 2145–2151.CrossRefGoogle Scholar
  19. Hwang, J.-S. & J. R. Strickler, 2001. Can copepods differentiate prey from predator hydromechanically? Zoological Studies 40: 1–6.Google Scholar
  20. Johnson, T. B., 1995. Long term dynamics of the zooplanktivorous fish community in Lake Mendota, WI. PhD Thesis, University of Madison-Wisconsin, Madison, USA.Google Scholar
  21. Kalff, J., 2002. Limnology: Inland Water Ecosystems. Prentice Hall, Upper Saddle River, NJ.Google Scholar
  22. Kerfoot, W. C., 1985. Adaptive value of vertical migration: comments on the predation hypothesis and some alternatives. In Rankin, M. A. (ed.), Migration: Mechanisms, Adaptive Significance, Vol. 27. University of Texas, Port Aransas: 91–113.Google Scholar
  23. Kibby, H. V., 1971. Effect of temperature on the feeding behavior of Daphnia rosea. Limnology and Oceanography 16: 580–581.CrossRefGoogle Scholar
  24. Loiterton, B., M. Sundbom & T. Vrede, 2004. Separating physical and physiological effects of temperature on zooplankton feeding rate. Aquatic Sciences 66: 123–129.CrossRefGoogle Scholar
  25. MacArthur, J. W. & W. H. T. Baittie, 1929. Metabolic rates and their relation to longevity in Daphnia magna. Journal of Experimental Zoology 53: 243–268.CrossRefGoogle Scholar
  26. Mandelbrot, B. B., 1967. How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science 156: 636–638.CrossRefPubMedGoogle Scholar
  27. McMahon, J. W., 1965. Some physical factors influencing the feeding behavior of Daphnia magna Straus. Canadian Journal of Fisheries and Aquatic Sciences 43: 603–611.Google Scholar
  28. O’Keefe, T. C., M. C. Brewer & S. I. Dodson, 1998. Swimming behavior of Daphnia: its role in determining predation risk. Journal of Plankton Research 20: 973–984.CrossRefGoogle Scholar
  29. Papoulis, A., 1965. Probability, Random Variables, and Stochastic Processes. McGraw Hill, New York.Google Scholar
  30. Reichwaldt, E. S., 2008. Food quality influences habitat selection in Daphnia. Freshwater Biology 53: 872–883.CrossRefGoogle Scholar
  31. Reichwaldt, E. S., I. D. Wolf & H. Stibor, 2005. Effects of a fluctuating temperature regime experienced by Daphnia during diel vertical migration on Daphnia life history parameters. Hydrobiologia 543: 199–205.CrossRefGoogle Scholar
  32. Ringelberg, J., 1999. The photobehaviour of Daphnia spp. as a model to explain diel vertical migration in zooplankton. Biological Reviews 74: 397–423.CrossRefGoogle Scholar
  33. Ryan, S. & S. I. Dodson, 1998. Seasonal analysis of Daphnia pulicaria swimming behavior. Hydrobiologia 384: 111–118.CrossRefGoogle Scholar
  34. Schalau, K., K. Rinke, D. Straile & F. Peeters, 2008. Temperature is the key factor explaining interannual variability of Daphnia development in spring: a modelling study. Oecologia 157: 531–543.CrossRefPubMedGoogle Scholar
  35. Seidl, M. D., R. Pirow & R. J. Paul, 2005. Acclimation of the microcrustacean Daphnia magna to warm temperatures is dependent on haemoglobin expression. Journal of Thermal Biology 30: 532–544.CrossRefGoogle Scholar
  36. Seiwell, H. R., 1930. Influence of temperature on the rate of beating of the hearth of a Cladoceran. Journal of Experimental Zoology 57: 331–346.CrossRefGoogle Scholar
  37. Seuront, L., M. C. Brewer & J. R. Strickler, 2004. Quantifying zooplankton swimming behavior: the question of scale. In Seuront, L. & P. G. Strutton (eds), Handbook of Scaling Methods in Aquatic Ecology – Measurements, Analysis, Simulation. CRC Press, Boca Raton, FL: 333–359.Google Scholar
  38. Smith, F. E. & E. R. Baylor, 1953. Color responses in the Cladocera and their ecological significance. The American Naturalist 87: 49–55.CrossRefGoogle Scholar
  39. Smith, K. C. & E. R. Macagno, 1990. UV photoreceptors in the compound eye of Daphnia magna (Crustacea, Branchiopoda). A fourth spectral class in single ommatidia. Journal of Comparative Physiology A 166: 597–606.CrossRefGoogle Scholar
  40. Sokal, R. R. & F. J. Rohlf, 1995. Biometry. W. H. Freeman and Company, New York.Google Scholar
  41. Sommer, U., Z. M. Gliwicz, W. Lampert & A. Duncan, 1986. The PEG-model of seasonal succession of planktonic events in fresh waters. Archiv für Hydrobiologie 106: 433–471.Google Scholar
  42. Szulkin, M., P. Dawidowicz & S. I. Dodson, 2006. Behavioural uniformity as a response to cues of predation risk. Animal Behaviour 71: 1013–1019.CrossRefGoogle Scholar
  43. Threlkeld, S. T., 1987. Daphnia life history strategies and resource allocation patterns. In Peters, R. H. & R. de Bernardi (eds), Daphnia. Memorie dell’Istituto Italiano di Idrobiologia Dott. Marco de Marchi, Vol. 45. Consiglio Nazionale delle Ricerche, Verbania-Pallanza: 353–366.Google Scholar
  44. Tiselius, P., B. Hansen, P. Jonsson, T. Kiørboe, T. G. Nielsen, S. Piontkovski & E. Saiz, 1995. Can we use laboratory-reared copepods for experiments? A comparison of feeding behaviour and reproduction between a field and a laboratory population of Acartia tonsa. ICES Journal of Marine Science 52: 369–376.CrossRefGoogle Scholar
  45. Tukey, J. W., 1977. Exploratory data analysis. Addison-Wesley, Reading, MA.Google Scholar
  46. Uttieri, M., M. G. Mazzocchi, A. Nihongi, M. Ribera d’Alcalà, J. R. Strickler & E. Zambianchi, 2004. Lagrangian description of zooplankton swimming trajectories. Journal of Plankton Research 26: 99–105.CrossRefGoogle Scholar
  47. Uttieri, M., E. Zambianchi, J. R. Strickler & M. G. Mazzocchi, 2005. Fractal characterization of three-dimensional zooplankton swimming trajectories. Ecological Modelling 185: 51–63.CrossRefGoogle Scholar
  48. Vijverberg, J., 1980. Effect of temperature in laboratory studies on development and growth of Cladocera and Copepoda from Tjeukemeer, The Netherlands. Freshwater Biology 10: 317–340.CrossRefGoogle Scholar
  49. Vogel, S., 1994. Life in Moving Fluids – The Physical Biology of Flow. Princeton University Press, Princeton.Google Scholar
  50. Weber, A. & A. Van Noordwijk, 2002. Swimming behaviour of Daphnia clones: differentiation through predator infochemicals. Journal of Plankton Research 24: 1335–1348.CrossRefGoogle Scholar
  51. Welch, P. D., 1970. The use of Fast Fourier Transform for estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Transactions on Audio and Electroacoustics 15: 70–73.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Joshua J. Ziarek
    • 1
  • Ai Nihongi
    • 2
  • Takeyoshi Nagai
    • 3
  • Marco Uttieri
    • 4
  • J. Rudi Strickler
    • 2
  1. 1.Department of BiochemistryMedical College of WisconsinMilwaukeeUSA
  2. 2.Great Lakes WATER InstituteUniversity of Wisconsin-MilwaukeeMilwaukeeUSA
  3. 3.Department of Ocean SciencesTokyo University of Marine Science and TechnologyTokyoJapan
  4. 4.Department of Environmental SciencesUniversity of Naples “Parthenope”NaplesItaly

Personalised recommendations