, Volume 662, Issue 1, pp 197–204 | Cite as

Geographical variation in rotifers associated with Microcystis blooms



Lake George, Uganda, lies on the equator and shows little variation in temperature or in the dominance of Microcystis in the phytoplankton. The dominant planktonic rotifers in Lake George are compared to those found in lakes in other parts of the world, ranging from tropical and subtropical lakes with semi-permanent blooms of Microcystis to temperate localities with summer blooms or less regular blooms at multiannual intervals. A modified Sorensen Similarity Index is used to show a latitudinal gradient in the rotifers associated with Microcystis.


Biogeography Rotifers Similarity Microcystis 



My visits to Lake George were financed by the Leverhume Trust and the Inter-University Council. The Royal Society financed two expeditions to Cameroon, and the Canadian International Development Agency sponsored my work in Ethiopia. The samples from Burma were collected whilst participating in a wetland survey jointly sponsored by the Myanmar Forestry Department and the Wild Bird Society of Japan. Simba Chan and U. Thien Aung smoothed our path in Myanmar. The numerous samples from Dianchi Lake were collected by Jon Davies, who also sampled some of the localities in Myanmar. The samples from New Zealand were collected whilst visiting my Antipodean counterpart, Dr. John Green, who generously introduced me to a range of localities around the University of Waikato.

Supplementary material

10750_2010_496_MOESM1_ESM.docx (13 kb)
Supplementary material 1 (DOCX 13 kb)


  1. Baxter, R. M. & R. B. Wood, 1965. Studies on stratification in the Bishoftu crater lakes. Journal of Applied Ecology 2: 416.Google Scholar
  2. Burgis, M. J., J. P. E. C. Darlington, L. G. Dunn, G. G. Ganf, J. J. Gwahaba & L. M. McGowan, 1973. The biomass and distribution of organisms in Lake George, Uganda. Proceedings of the Royal Society of London B 184: 271–298.Google Scholar
  3. de Beauchamp, P., 1932. Scientific results of the Cambridge Expedition to the East African Lakes 1930-31. 6. Rotiferes et Gastrotriches. Journal of the Linnean Society, Zoology 38: 231–248.CrossRefGoogle Scholar
  4. Dow, C. S. & U. K. Swoboda, 2000. Cyanotoxins. In Whitton, B. A. & M. Potts (eds), The Ecology of Cyanobacteria. Kluwer, Dordrecht: 613–632.Google Scholar
  5. Flint, E. A., 1975. Phytoplankton in some New Zealand Lakes. In Jolly, V. H. & J. M. A. Brown (eds), New Zealand Lakes. Aukland University Press, Aukland: 163–205.Google Scholar
  6. Fulton, R. S. & H. W. Paerl, 1987. Effects of colonial morphology on zooplankton utilisation of algal resources during blue-green algal (Microcystis aeruginosa) blooms. Limnology and Oceanography 32: 634–644.CrossRefGoogle Scholar
  7. Ganf, G. G. & A. B. Viner, 1973. Ecological stability in a shallow equatorial lake (Lake George, Uganda). Proceedings of the Royal Society of London B 184: 321–346.Google Scholar
  8. Ganf, G. G., 1974. Phytoplankton biomass and distribution in a shallow eutrophic lake (Lake George, Uganda). Oecologia (Berlin) 16: 9–29.CrossRefGoogle Scholar
  9. Gebre-Mariam, Z., 1994. Long term changes in indices of chemical and productive status in a group of tropical Ethiopian lakes with differing exposure to human influence. Archiv für Hydrobiologie 132: 115–125.Google Scholar
  10. Green, J., 1972. Latitudinal variation in associations of planktonic Rotifera. Journal of Zoology, London 167: 31–39.CrossRefGoogle Scholar
  11. Green, J., 1993. Zooplankton associations in East African lakes spanning a wide salinity range. Hydrobiologia 267: 249–256.CrossRefGoogle Scholar
  12. Green, J., 1994. The temperate-tropical gradient of planktonic Protozoa and Rotifera. Hydrobiologia 272: 13–26.CrossRefGoogle Scholar
  13. Green, J., 2005. Morphological variation of Keratella cochlearis (Gosse) in a backwater of the River Thames. Hydrobiologia 546: 189–196.CrossRefGoogle Scholar
  14. Green, J. 2009. Nilotic Lakes of the Western Rift. In Dumont, H. J. (ed.), The Nile. Monographiae Biologicae, Vol. 89. Springer, Dordrecht: 13–26.Google Scholar
  15. Green, J. & S. Mengestou, 1991. Specific diversity and community structure of Rotifera in a salinity series of Ethiopian inland waters. Hydrobiologia 209: 95–106.Google Scholar
  16. Komarek, J. & J. Komarkova, 2002. Review of the European Microcystis morphospecies (Cyanoprokaryotes) from nature. Czech Phycology, Olomouc 2: 1–24.Google Scholar
  17. Otsuka, S., S. Suda, S. Shibata, H. Oyaizu, S. Matsumoto & M. M. Watanabe, 2001. A proposal for the unification of five species in the cyanobacterial genus Microcystis Kutzing ex Lemmermann 1907 under the rules of the Bacteriological Code. International Journal of Systematic and Evolutionary Microbiology 51: 873–879.PubMedGoogle Scholar
  18. Raikow, D. F., O. Sarnelle, A. E. Wilson & S. K. Hamilton, 2004. Dominance of the noxious cyanobacterium Microcystis aeruginosa in low nutrient lakes is associated with exotic Zebra mussels. Limnology and Oceanography 49: 282–287.CrossRefGoogle Scholar
  19. Reynolds, C., 2006. Ecology of Phytoplankton. Cambridge University Press, Cambridge: 535.Google Scholar
  20. Rich, F., 1933. Scientific results of the Cambridge Expedition to the East African Lakes, 1930-31. The Algae. Journal of the Linnean Society, Zoology 38: 249–275.CrossRefGoogle Scholar
  21. Sorensen, T., 1948. A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on Danish commons. Biologiske Skrifter 5(4): 1–34.Google Scholar
  22. Vanderploeg, H. A., J. R. Liebig, W. W. Carmichael, M. A. Agy, T. H. Johengen, G. L. Fahnenstiel & T. F. Nalepa, 2001. Zebra Mussel (Dreissena polymorpha) selective filtration promoted toxic Microcystis blooms in Saginaw Bay (Lake Huron) and Lake Erie. Canadian Journal of Fisheries and Aquatic Sciences 58: 1208–1221.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.TeddingtonUK

Personalised recommendations