, Volume 662, Issue 1, pp 113–119 | Cite as

Axenic culture of Brachionus plicatilis using antibiotics

  • Koushirou Suga
  • Yukari Tanaka
  • Yoshitaka Sakakura
  • Atsushi Hagiwara


The rotifer Brachionus plicatilis culture is composed of complex microcosms including bacteria, protozoans, algae, and fungi. Previous studies reported methods to establish axenic rotifer cultures, but further refinement of these techniques is needed, for molecular biological research which requires pure culture to isolate nucleic acids from rotifers only. In order to render rotifer culture axenic, we tested five antibiotics: ampicillin (Amp), chloramphenicol (Cp), kanamycin (Km), nalidixic acid (Na), and streptomycin (Sm) at 30–100 μg/ml. Except for Cp, which reduces rotifer reproduction, all other antibiotics at the tested concentrations did not affect rotifer reproduction or show any toxic effects. A rotifer disinfection method was finally established by treating the resting eggs with 0.25% (w/v) sodium hypochlorite (NaOCl) for 3 min, washing with sterilized sea water, and then exposing the neonates to an Amp, Km, Na, and Sm mixture. Using four nutrient media, we confirmed that this protocol renders the rotifer culture bacterial and fungus free. The axenic rotifer culture generated here is useful not only for genetic analysis of Brachionus plicatilis, but for studying the rotifer life cycle without bacterial influence.


Brachionus plicatilis Antibiotic Bacteria free Resting egg disinfection 



A part of this research was supported by a Grant in Aid for Scientific Research (B), 2009–2011, No. 21380125, from the Ministry of Education, Culture, Sports, Science and Technology of Japan, to A. H. We would like to thank Dr. Helen S. Marcial for her review and comments.


  1. Amikura, R., K. Sato & S. Kobayashi, 2005. Role of mitochondrial ribosome-dependent translation in germline formation in Drosophila embryos. Mechanisms of Development 122: 1087–1093.CrossRefPubMedGoogle Scholar
  2. Aoki, S. & A. Hino, 1996. Nitrogen flow in a chemostat culture of the rotifer Brachionus plicatilis. Fisheries Science 62: 8–14.Google Scholar
  3. Balompapueng, M. D., N. Munuswamy, A. Hagiwara & K. Hirayama, 1997. Effect of disinfectants on the hatching of marine rotifer resting eggs Brachionus plicatilis Müller. Aquaculture Research 28: 559–565.CrossRefGoogle Scholar
  4. Bartscht, K., H. Cypionka & J. Overmann, 1999. Evaluation of cell activity and of methods for the cultivation of bacteria from a natural lake community. FEMS Microbiology Ecology 28: 249–259.CrossRefGoogle Scholar
  5. Denekamp, N. Y., M. A. S. Thorne, M. S. Clark, M. Kube, R. Reinhardt & E. Lubzens, 2009. Discovering genes associated with dormancy in the monogonont rotifer Brachionus plicatilis. BMC Genomics 10: 108.CrossRefPubMedGoogle Scholar
  6. Dhert, Ph., K. Schoeters, P. Vermeulen, J. Sun, S. Gao, Z. Shang, X. Naihong, H. Van Duffel & P. Sorgeloos, 1997. Production, disinfection and evaluation for aquaculture applications of rotifer resting eggs from Bohai Bay, P.R. of China. Aquaculture International 5: 105–112.CrossRefGoogle Scholar
  7. Dougherty, E. C., B. Solberg & D. J. Ferral, 1961. The first axenic cultivation of a rotifer species. Experientia 17: 131–132.CrossRefPubMedGoogle Scholar
  8. Douillet, P., 1998. Disinfection of rotifer cysts leading to bacteria-free populations. Journal of Experimental Marine Biology and Ecology 224: 183–192.CrossRefGoogle Scholar
  9. Douillet, P. A., 2000a. Bacterial additives that consistently enhance rotifer growth under synxenic culture conditions 1. Evaluation of commercial products and pure isolates. Aquaculture 182: 249–260.CrossRefGoogle Scholar
  10. Douillet, P. A., 2000b. Bacterial additives that consistently enhance rotifer growth under synxenic culture conditions 2. Use of single and multiple bacterial probiotics. Aquaculture 182: 241–248.CrossRefGoogle Scholar
  11. Hagiwara, A., 2002. Frist live food of marine fish: biological function of rotifers and application to larval rearing. Suisan Zoshoku 50: 473–478. (in Japanese).Google Scholar
  12. Hagiwara, A., A. Hino & R. Hirano, 1988. Comparison of resting egg formation among five Japanese stocks of the rotifer Brachionus plicatilis. Nippon Suisan Gakkaishi 54: 577–580.Google Scholar
  13. Hagiwara, A., K. Hamada, S. Hori & K. Hirayama, 1994. Increased sexual reproduction in Brachionus plicatilis (Rotifera) with the addition of bacteria and rotifer extracts. Journal of Experimental Marine Biology and Ecology 181: 1–8.CrossRefGoogle Scholar
  14. Hagiwara, A., W. G. Gallardo, M. Assavaaree, T. Kotani & A. B. de Araujo, 2001. Live food production in Japan: recent progress and future aspects. Aquaculture 200: 111–127.CrossRefGoogle Scholar
  15. Hagiwara, A., K. Suga, A. Akazawa, T. Kotani & Y. Sakakura, 2007. Development of rotifer strains with useful traits for rearing fish larvae. Aquaculture 268: 44–52.CrossRefGoogle Scholar
  16. Hirata, H., O. Murata, S. Yamada, H. Ishitani & M. Wachi, 2004. Probiotic culture of the rotifer Brachionus plicatilis. Hydrobiologia 387(388): 495–498.Google Scholar
  17. Hirayama, K. & H. Funamoto, 1983. Supplementary effect of several nutrients on nutritive deficiency of baker’s yeast for population growth of the rotifer Brachionus plicatilis. Bulletin of the Japanese Society of Scientific Fisheries 49: 505–510.Google Scholar
  18. Hirayama, K., K. Takagi & H. Kimura, 1979. Nutritional effect of eight species of marine phytoplankton on population growth of the rotifer, Brachionus plicatilis. Nippon Suisan Gakkaishi 45: 11–16.Google Scholar
  19. Kitaori, N. & M. Takahashi, 2005. Improvements in the sterilization performance of sodium hypochlorite. Electrochemistry 73: 141–144.Google Scholar
  20. Kotani, T., T. Genka, H. Fushimi, M. Hayashi, K. Dierckens & P. Sorgeloos, 2009. Effect of cultivation methods on nutritional enrichment of euryhaline rotifer Brachionus plicatilis. Fisheries Science 75: 1–10.CrossRefGoogle Scholar
  21. Marcial, H. S., A. Hagiwara & T. W. Snell, 2005. Effect of some pesticides on reproduction of rotifer Brachionus plicatilis Müller. Hydrobiologia 546: 569–575.CrossRefGoogle Scholar
  22. Maruyama, I., Y. Ando, T. Maeda & K. Hirayama, 1989. Uptake of vitamin B12 by various strains of unicellular algae Chlorella. Nippon Suisan Gakkaishi 55: 1785–1790.Google Scholar
  23. Miyakawa, M. & K. Muroga, 1988. Bacterial flora of cultured rotifer Brachionus plicatilis. Suisan Zoshoku 35: 237–243.Google Scholar
  24. Noda, K., N. Ohno, K. Tanaka, N. Kamiya, M. Okuda, T. Yadomae, K. Nomot & Y. Shoyama, 1996. A water-soluble antitumor glycoprotein from Chlorella vulgaris. Planta Medica 62: 423–426.CrossRefPubMedGoogle Scholar
  25. Oo, A. K., G. Kaneko, M. Hirayama, S. Kinoshita & S. Watabe, 2009. Identification of genes differentially expressed by calorie restriction in the rotifer (Brachionus plicatilis). Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology. doi: 10.1007/s00360-009-0389-6.
  26. Raleigh, E. A., K. Elbing & R. Brent, 2002. Selected topics from classical bacterial genetics. In Ausubel, F. M., R. Brent, R. E. Kingston, D. D. Moore, J. G. Sediman, J. A. Smith & K. Struhl (eds), Current Protocol in Molecular Biology. Wiley, New York, NY (Chapter 1, Unit 1.4).Google Scholar
  27. Reasoner, D. J., 2004. Heterotrophic plate count methodology in the United States. International Journal of Food Microbiology 92: 307–315.CrossRefPubMedGoogle Scholar
  28. Reasoner, D. J. & E. E. Geldreich, 1985. A new medium for the enumeration and subculture of bacteria from potable water. Applied and Environmental Microbiology 49: 1–7.PubMedGoogle Scholar
  29. Rombaut, G., Ph. Dhert, J. Vandenberghe, L. Verschuere, P. Sorgeloos & W. Verstraete, 1999. Selection of bacteria enhancing the growth rate of axenically hatched rotifers (Brachionus plicatilis). Aquaculture 176: 195–207.CrossRefGoogle Scholar
  30. Scott, J. M., 1983. Rotifer nutrition using supplemented monoxenic cultures. Hydrobiologia 104: 155–166.CrossRefGoogle Scholar
  31. Snell, T. W. & M. J. Carmona, 1995. Comparative toxicant sensitivity of sexual and asexual reproduction in the rotifer Brachionus calyciflorus. Environmental Toxicology and Chemistry 14: 415–420.Google Scholar
  32. Snell, T. W. & C. R. Janssen, 1995. Rotifers in ecotoxicology: a review. Hydrobiologia 313(314): 231–247.CrossRefGoogle Scholar
  33. Suga, K., D. B. Mark Welch, Y. Tanaka, Y. Sakakura & A. Hagiwara, 2007a. Analysis of expressed sequence tags of the cyclically parthenogenetic rotifer Brachionus plicatilis. PLoS ONE 2: e671.CrossRefPubMedGoogle Scholar
  34. Suga, K., Y. Tanaka, Y. Sakakura & A. Hagiwara, 2007b. Inheritance of mitochondrial DNA in the rotifer Brachionus plicatilis. Hydrobiologia 593: 167–173.CrossRefGoogle Scholar
  35. Suga, K., D. B. Mark Welch, Y. Tanaka, Y. Sakakura & A. Hagiwara, 2008. Two circular chromosomes of unequal copy number make up the mitochondrial genome of the rotifer Brachionus plicatilis. Molecular Biology and Evolution 25: 1129–1137.CrossRefPubMedGoogle Scholar
  36. Surman, S. B., L. H. G. Morton & C. W. Keevil, 1994. The dependence of Legionella pneumophila on other aquatic bacteria for survival on R2A medium. International Biodeterioration and Biodegradation 33: 223–236.CrossRefGoogle Scholar
  37. Yoshinaga, T., G. Kaneko, S. Kinoshita, K. Tsukamoto & S. Watabe, 2003. The molecular mechanisms of life history alterations in a rotifer: a novel approach in population dynamics. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 136: 715–722.CrossRefGoogle Scholar
  38. ZoBell, C. E., 1941. Studies on marine bacteria. I. The cultural requirement of heterotrophic aerobes. Journal of Marine Research 4: 42–75.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Koushirou Suga
    • 1
  • Yukari Tanaka
    • 1
  • Yoshitaka Sakakura
    • 1
  • Atsushi Hagiwara
    • 2
  1. 1.Faculty of FisheriesNagasaki UniversityNagasakiJapan
  2. 2.Graduate School of Science and TechnologyNagasaki UniversityNagasakiJapan

Personalised recommendations