, Volume 652, Issue 1, pp 311–328 | Cite as

Eryngium (Apiaceae) phytotelmata and their macro-invertebrate communities, including a review and bibliography

  • Raúl E. Campos
Primary research paper


The objective of this study was to determine how phytotelm communities differ in four Eryngium sp. of different morphologies. Macro-invertebrate communities from 320 individual plants of Eryngium horridum, E. stenophyllum, E. serra, and E. elegans were sampled in Buenos Aires Province, Argentina. The morphology and structure of each Eryngium specimen, and water volume and debris in their phytotelmata, were measured. Morphology indicated that E. elegans and E. serra are closely related and differ from E. horridum and E. stenophyllum. The latter two species are markedly different from E. stenophyllum, the biggest of the four. The communities differed among these Eryngium species, but a large number of generalist macro-invertebrates use all four phytotelmata. Canonical correlation analysis showed that diptera are inhabitants in E. horridum, and micro-crustaceans in E. serra and E. elgans. By contrast, no specific taxa were grouped in E. stenophyllum. Results of inter-specific association (C 8 coefficient) show that species of Culicidae and Chironomidae are highly positive associations in E. horridum, by contrast with the negative association observed in E. stenophyllum. Culex renatoi (Culicidae) and Polypedilum sp. (Chironomidae) were highly likely to co-occur in the same plant of E. serra, but not with Metriocnemus eryngiotelmatus (Chironomidae). Larsia sp. (Chironomidae) was the species better associated with the other macro-invertebrates in E. elegans. The food web was constructed from Eryngium phytotelmata. This study includes an updated list of known aquatic and semi-aquatic invertebrates reported from Eryngium phytotelmata, and their bibliography.


Eryngium Phytotelmata Arthropod association Biodiversity Food chains 



I thank Dr. Victoria Sy for her help in field work, and the following Drs. for taxonomic determination of specimens: Susana Martínez (Apiaceae) (Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires); Andrea Dipollito (Copepoda); Analía Paggi, and Augusto Siri (Chironomidae) (ILPLA, UNLP); Liliana Fernández (Coleoptera); Analía Díaz (Ostracoda); Gustavo Spinelli and Florentina Díaz (Ceratopogonidae) (Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata); Mercedes Lizarralde de Grosso (Aulacigastridae) (Instituto Superior de Entomología “Dr Abraham Willink”, Universidad Nacional de Tucumán). I also thank Philip Lounibos (Florida Medical Entomology Laboratory, USA) and Motoyoshi Mogi (Saga University, Japan) for critical review, and Monica Caviglia for English review. I want to thank the two anonymous reviewers for their suggestions. This research was supported by Grant no. 5924 from Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina. This is a contribution of the Instituto de Limnología Journal Serie No. 876.

Supplementary material

10750_2010_364_MOESM1_ESM.doc (180 kb)
Supplementary material 1 (DOC 180 kb)


  1. Armbruster, P., R. A. Hutchinson & P. Cotgreave, 2002. Factors influencing community structure in a South American tank bromeliad fauna. Oikos 96: 225–234.CrossRefGoogle Scholar
  2. Balseiro, E. G., 1983. Observaciones sobre la selectividad de áreas de postura en una población local de Culex castroi Casal y García (Diptera, Culicidae). Revista de la Sociedad Entomológica Argentina 42: 125–130.Google Scholar
  3. Bradshaw, W. E. & C. M. Holzapfel, 1977. Interaction between photoperiod, temperature, and chilling in dormant larvae of the tree-hole mosquito, Toxorhynchites rutilus Coq. Biological Bulletin 152: 147–158.CrossRefPubMedGoogle Scholar
  4. Burgos, J. J. & A. L. Vidal, 1951. Los climas de la república Argentina según la nueva clasificación de Thornthwaite. Meteoros 1: 3–32.Google Scholar
  5. Cabrera, A. L. & A. Willink, 1980. Biogeografia de América Latina. Serie de Biología, Monografia 13. Organization of American States, Washington, DC, USA.Google Scholar
  6. Cabrera, A. L. & E. M. Zardini, 1978. Manual de la flora de los alrededores de Buenos Aires. Ed. Acme S.A.C.I., Buenos Aires, Argentina.Google Scholar
  7. Caldwell, J. P., 1998. Cannibalistic interactions resulting from indiscriminate predatory behavior in tadpoles of poison frogs (Anura: Dendrobatidae). Biotropica 30: 92–103.CrossRefGoogle Scholar
  8. Campos, R. E. & L. P. Lounibos, 1999. Eryngium spp. (Umbelliferae) as phytotelmata and their Culex (Culex) inhabitants in temperate Argentina. Journal of the American Mosquito Control Association 15: 493–499.PubMedGoogle Scholar
  9. Casal, O. H. & M. García, 1967a. Culex (Culex) castroi, nueva especie de la República Argentina (Diptera, Culicidae). Physis 26: 451–457.Google Scholar
  10. Casal, O. H. & M. García, 1967b. Culex (Culex) hepperi, nueva especie del Delta Bonaerense del Río Paraná (Diptera, Culicidae). Physis 27: 87–94.Google Scholar
  11. Corbet, P. S., 1983. Odonata in phytotelmata. In Frank, J. H. & L. P. Lounibos (eds), Phytotelmata: Terrestrial Plants as Hosts of Aquatic Insects Communities. Plexus Inc., New Jersey, USA: 29–54.Google Scholar
  12. Da Silva Mattos, S., A. Da Silva Guedes & S. X. Hamilton, 1978. Uma espécie nova de Culex (Culex) que cria em Umbelífera (Diptera, Culicidae). Revista Brasilera de Biología 38: 31–35.Google Scholar
  13. Dejean, A. & I. Olmsted, 1997. Ecological studies on Aechmea bracteata (Swartz) (bromeliaceae). Journal of Natural History 31: 1313–1334.CrossRefGoogle Scholar
  14. Donato, M. & A. C. Paggi, 2005. A new Neotropical species of the genus Metriocnemus van der Wulp (Chironomidae: Orthocladiinae) from Eryngium L. (Apiaceae) phytotelmata. Zootaxa 1050: 1–14.Google Scholar
  15. Donato, M. & A. C. Paggi, 2008. Polypedilum parthenogeneticum (Diptera: Chironomidae): a new parthenogenetic species from Eryngium L. (Apiaceae) phytotelmata. Aquatic Insects 30: 51–60.Google Scholar
  16. Fish, D., 1983. Phytotelmata: flora and fauna. In Frank, J. H. & L. P. Lounibos (eds), Phytotelmata: Terrestrial Plants as Hosts of Aquatic Insects Communities. Plexus Inc., New Jersey, USA: 1–27.Google Scholar
  17. Frangi, J. L. & O. J. Bottino, 1995. Comunidades vegetales de la Sierra de la Ventana, provincia de Buenos Aires, Argentina. Revista de la Facultad de Agronomía 71: 93–133.Google Scholar
  18. Frank, J. H., 1983. Bromeliad phytotelmata and their biota, especially mosquitoes. In Frank, J. H. & L. P. Lounibos (eds), Phytotelmata: Terrestrial Plants as Hosts of Aquatic Insects Communities. Plexus Inc., New Jersey, USA: 101–128.Google Scholar
  19. Frank, J. H. & G. A. Curtis, 1981. On the bionomics of bromeliad-inhabiting mosquitoes. III. The probable strategy of larval feeding in Wyeomyia vanduzeei and Wy. medioalbipes. Mosquito News 37: 200–206.Google Scholar
  20. Frank, J. H. & L. P. Lounibos, 1983. Phytotelmata: Terrestrial Plants as Hosts of Aquatic Insects Communities. Plexus Inc., New Jersey, USA.Google Scholar
  21. Frank, J. H. & L. P. Lounibos, 2008. Insects and allies associated with bromeliads: a review. Terrestrial Arthropod Reviews 1: 125–153.CrossRefGoogle Scholar
  22. Harrington, H., 1947. Explicación de las hojas 33 m y 34 m: Sierra de Curamalal y Ventana, Provincia de Buenos Aires. Dirección de Minas y Geología Buenos Aires Boletín 51.Google Scholar
  23. Hulbert, S. H., 1969. A coefficient of interspecific association. Ecology 50: 1–9.CrossRefGoogle Scholar
  24. Istock, C. A., S. S. Wasserman & H. Zimmer, 1975. Ecology and evolution of the pitcher plant mosquito 1. Population dynamics and laboratory responses to food and population density. Evolution 29: 296–312.CrossRefGoogle Scholar
  25. Kitching, R. L., 1971. An ecological study of water-filled tree-holes and their position in the woodland ecosystem. Journal of Animal Ecology 40: 281–302.CrossRefGoogle Scholar
  26. Kitching, R. L., 2001. Food webs in phytotelmata: “bottom-up” and “top-down” explanations for community structure. Annual Review of Entomology 46: 729–760.CrossRefPubMedGoogle Scholar
  27. Kristensen, M. J. & J. L. Frangi, 1995. Mesoclimas de pastizales de la Sierra de la Ventana. Ecología Austral 5: 55–64.Google Scholar
  28. López, L. C. S. & R. I. Ríos, 2001. Phytotelmata faunal communities in sun-exposed versus shaded terrestrial bromeliads from Southeastern Brazil. Selbyana 22: 219–224.Google Scholar
  29. López, L. C. S., P. J. F. P. Rodrigues & R. I. Ríos, 1999. Frogs and snakes as phoretic dispersal agents of bromeliad ostracods (Limnocytheridae: Elpidium) and annelids (Naididae: Dero). Biotropica 31: 705–708.CrossRefGoogle Scholar
  30. Lounibos, L. P., 1978. Mosquito breeding and oviposition stimulant in fruit husks. Ecological Entomology 3: 119–304.CrossRefGoogle Scholar
  31. Lounibos, L. P., J. H. Frank, C. E. Machado-Allison, P. Ocanto & J. C. Navarro, 1987. Survival, development and predatory effects of mosquito larvae in Venezuelan phytotelmata. Journal of Tropical Ecology 3: 221–242.CrossRefGoogle Scholar
  32. Lounibos, L. P., G. F. O’Meara, R. L. Escher, N. Nishimura, M. Cutwa, T. Nelson, R. E. Campos & S. A. Juliano, 2001. Testing predictions of displacement of native Aedes by the invasive Asian Tiger Mosquito Aedes albopictus in Florida. USA Biological Invasions 3: 151–166.CrossRefGoogle Scholar
  33. Lounibos, L. P., G. F. O’Meara, N. Nishimura & R. L. Escher, 2003. Interactions with native mosquito larvae regulate the production of Aedes albopictus from bromeliads in Florida. Ecological Entomology 28: 551–558.CrossRefGoogle Scholar
  34. Machado, A. B. M., 1976. Fauna associada a água das folhas de umbelíferas com observações sobre a ninfa de Roppaneura beckeri Santos (Odonata-Protoneuridae). Ciência e Cultura 28: 895–896.Google Scholar
  35. Machado-Allison, C. E., R. R. Barrera, J. H. Frank, L. Delgado & C. Gomez-Cova, 1985. Mosquito communities in Venezuelan phytotelmata. Ecology of mosquitoes. In Lounibos, L. P., J. R. Rey & J. H. Frank (eds), Proceedings of a Workshop, Florida Medical Entomology Laboratory, Vero Beach, FL, USA: 79–93.Google Scholar
  36. Magurran, A. E., 1988. Ecological Diversity and Its Measurement. Croom-Helm, London.Google Scholar
  37. Martínez, S., 2005. Flora Fanerogámica Argentina Fasc. 94. 228. Apiaceae, Parte 2. Subfamilia III. Saniculoideae. Programa Proflora. CONICET, Buenos Aires, Argentina.Google Scholar
  38. Micieli, M. V., J. J. García & J. J. Becnel, 2000. Life cycle and description of Amblyospora camposi n. sp. (Microsporidia: Amblyosporidae) in the mosquito Culex renatoi (Diptera, Culicidae) and the copepod Paracyclops fimbriatus fimbriatus (Copepoda, Cyclopidae). Journal of Eukaryotic Microbiology 47: 575–580.CrossRefPubMedGoogle Scholar
  39. Micieli, M. V., G. A. Marti, J. J. García, M. C. Tranchida & J. J. Becnel, 2007. Epizootiological studies of Amblyospora camposi (Microsporidia: Amblyosporidae) in Culex renatoi (Diptera: Culicidae) and Paracyclops fimbriatus fimbriatus (Copepoda: Cyclopidae) in a bromeliad habitat. Journal of Invertebrates Pathology 94: 31–37.CrossRefGoogle Scholar
  40. Mogi, M., 2000. Phytotelmata: cryptic mosquito habitats. In Ng, F. S. P. & H. S. Young (eds), Mosquitoes and Mosquito-Borne Diseases. Academy of Sciences Malaysia, Malaysia: 255–272.Google Scholar
  41. Naeem, S., 1990. Patterns of the distribution and abundance of competing species when resources are heterogeneous. Ecology 71: 1422–1429.CrossRefGoogle Scholar
  42. Pielou, E. C., 1984. The Interpretation of Ecological Data. Wiley, New York: 263 pp.Google Scholar
  43. Richardson, B. A., 1999. The bromeliad microcosm and the assessment of faunal diversity in a Neotropical forest. Biotropica 31: 321–336.CrossRefGoogle Scholar
  44. Richardson, B. A. & G. A. Hull, 2000. Insect colonization sequences in bracts of Heliconia caribaea in Puerto Rico. Ecological Entomology 25: 460–466.CrossRefGoogle Scholar
  45. Romero, G. Q., P. Mazzafera, J. Vasconcellos-Neto & P. C. O. Trivelin, 2006. Bromeliad-living spiders improve host plant nutrition and growth. Ecology 87: 803–808.CrossRefPubMedGoogle Scholar
  46. Ronderos, M., G. Spinelli, H. Huerta & F. Díaz, 2003. Immature stages of two Neotropical species of Dasyhelea Kieffer, 1911 (Diptera: Ceratopogonidae). Transactions American Entomological Society 129: 295–308.Google Scholar
  47. Ronderos, M., G. Spinelli & A. Borkent, 2008. A description of the larva and pupa of Culicoides charruus Spinelli & Marínez (Diptera: Ceratopogonidae) from leaf axils of Eryngium pandanifolium (Apiaceae) in Argentina. Russian Entomological Journal 17: 115–122.Google Scholar
  48. Rossi, G. C. & R. E. Harbach, 2008. Phytotelmatomyia, a new Neotropical subgenus of Culex (Diptera: Culicidae). Zootaxa 1879: 1–17.Google Scholar
  49. Siri, A., M. Donato & A. C. Paggi, 2008. New phytotelmata habitat to Metriocnemus eryngiotelmatus (Diptera: Chironomidae). Revista de la Sociedad Entomológica Argentina 67: 113–115.Google Scholar
  50. SMN, 1981. Estadísticas climatológicas. 1961–1970. Servicio Meteorológico Nacional, Fuerza Aérea Argentina.
  51. SMN, 1986. Estadísticas climatológicas. 1971–1980 Servicio Meteorológico Nacional, Fuerza Aérea Argentina.
  52. Spinelli, G. R. & M. E. Martínez, 1991. The genus Culicoides in Uruguay (Diptera: Ceratopogonidae). Insecta Mundi 5: 175–180.Google Scholar
  53. Spinelli, G. R. & W. W. Wirth, 1993. Los Ceratopogonidae de la Argentina (Insecta: Diptera). In de Castellano, Z. A. (ed.) Fauna de agua dulce de la República Argentina. Vol. 38. Diptera, fásc. 3. Ceratopogonidae. Fundación para la Educación, la Ciencia y la Cultura, Buenos Aires, Argentina: 124 pp.Google Scholar
  54. Stehr, F. W., 1987. Immature Insects, Vol. 1. Kendall and Hunt Publ. Co., Iowa, USA.Google Scholar
  55. Stehr, F. W., 1991. Immature Insects, Vol. 2. Kendall and Hunt Publ. Co., Iowa, USA.Google Scholar
  56. Ter Braak, C. J. F., 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67: 1167–1179.CrossRefGoogle Scholar
  57. Ter Braak, C. J. F. & P. Smilauer, 1998. CANOCO Reference Manual and Canoco Draw for Windows User’s Guide: Software for Canonical Community Ordination (Version 4.5). Microcomputer Power (Ithaca, NY, USA): 500 pp.Google Scholar
  58. Vucetich, M. C. & J. B. Rossi, 1980. Estudio preliminar de la fauna fitotélmica de Eryngium pandanifolium Cham. et Schlecht. Limnobios 1: 403–409.Google Scholar
  59. Wolda, H., 1981. Similarity indices, sample size and diversity. Oecologia 50: 296–302.CrossRefGoogle Scholar
  60. Zar, J. H., 1996. Biostatistical Analysis, 3rd ed. Prentice Hall, New Jersey, USA.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Instituto de Limnología “Dr. Raúl A. Ringuelet”, Universidad Nacional de La Plata-CONICETLa PlataArgentina

Personalised recommendations