, Volume 653, Issue 1, pp 15–28 | Cite as

Linking traits to species diversity and community structure in phytoplankton

  • Elena Litchman
  • Paula de Tezanos Pinto
  • Christopher A. Klausmeier
  • Mridul K. Thomas
  • Kohei Yoshiyama


In addition to answering Hutchinson’s question “Why are there so many species?”, we need to understand why certain species are found only under certain environmental conditions and not others. Trait-based approaches are being increasingly used in ecology to do just that: explain and predict species distributions along environmental gradients. These approaches can be successful in understanding the diversity and community structure of phytoplankton. Among major traits shaping phytoplankton distributions are resource utilization traits, morphological traits (with size being probably the most influential), grazer resistance traits, and temperature responses. We review these trait-based approaches and give examples of how trait data can explain species distributions in both freshwater and marine systems. We also outline new directions in trait-based approaches applied to phytoplankton such as looking simultaneously at trait and phylogenetic structure of phytoplankton communities and using adaptive dynamics models to predict trait evolution.


Phytoplankton Community structure Functional diversity Traits Growth Temperature Harmful algal blooms Adaptive dynamics 



This work was in part supported by the grants from the US National Science Foundation and the J.S. McDonnell Foundation to E.L. and C.A.K. We thank Luigi Naselli-Flores and Giampaolo Rossetti for inviting this contribution and two anonymous reviewers for helpful comments. This is Kellogg Biological Station contribution no. 1563.


  1. Abrams, P. A., 1990. Adaptive responses of generalist herbivores to competition–convergence or divergence. Evolutionary Ecology 4: 103–114.Google Scholar
  2. Ahlgren, G., 1987. Temperature functions in biology and their application to algal growth constants. Oikos 49: 177–190.Google Scholar
  3. Aksnes, D. L. & J. K. Egge, 1991. A theoretical model for nutrient uptake in phytoplankton. Marine Ecology Progress Series 70: 65–72.Google Scholar
  4. Arrigo, K. R., D. H. Robinson, D. L. Worthen, R. B. Dunbar, G. R. DiTullio, M. VanWoert & M. P. Lizotte, 1999. Phytoplankton community structure and the drawdown of nutrients and CO2 in the Southern Ocean. Science 283: 365–367.PubMedGoogle Scholar
  5. Assiss, L. C. S., 2009. Coherence, correspondence, and the renaissance of morphology in phylogenetic systematics. Cladistics 25: 528–544.Google Scholar
  6. Atkinson, D., B. J. Ciotti & D. J. S. Montagnes, 2003. Protists decrease in size linearly with temperature: ca. 2.5% degrees C(-1). Proceedings of the Royal Society of London B 270: 2605–2611.Google Scholar
  7. Beninca, E., J. Huisman, R. Heerkloss, K. D. Jöhnk, P. Branco, E. H. Van Nes, M. Scheffer & S. P. Ellner, 2008. Chaos in a long-term experiment with a plankton community. Nature 451: 822–825.PubMedGoogle Scholar
  8. Berg, H. C. & E. M. Purcell, 1977. Physics of chemoreception. Biophysical Journal 20: 193–219.PubMedGoogle Scholar
  9. Berges, J. A., D. E. Varela & P. J. Harrison, 2002. Effects of temperature on growth rate, cell composition and nitrogen metabolism in the marine diatom Thalassiosira pseudonana (Baciallriophyceae). Marine Ecology Progress Series 225: 139–146.Google Scholar
  10. Bouterfas, R., M. Belkoura & A. Dauta, 2002. Light and temperature effects on the growth rate of three freshwater algae isolated from a eutrophic lake. Hydrobiologia 489: 207–217.Google Scholar
  11. Briand, J. F., C. Leboulanger, J. F. Humbert, C. Bernard & P. Dufour, 2004. Cylindrospermopsis raciborskii (Cyanobacteria) invasion at mid-latitudes: selection, wide physiological tolerance, or global warming? Journal of Phycology 40: 231–238.Google Scholar
  12. Brown, J. H., P. A. Marquet & M. L. Taper, 1993. Evolution of body size – consequences of an energetic definition of fitness. American Naturalist 142: 573–584.PubMedGoogle Scholar
  13. Bruggeman, J., in press. A phylogenetic approach to the estimation of phytoplankton traits. Journal of Phycology.Google Scholar
  14. Butterwick, C., S. I. Heaney & J. F. Talling, 2005. Diversity in the influence of temperature on the growth rates of freshwater algae, and its ecological relevance. Freshwater Biology 50: 291–300.Google Scholar
  15. Cavender-Bares, J. & A. Wilczek, 2003. Integrating micro- and macroevolutionary processes in community ecology. Ecology 84: 592–597.Google Scholar
  16. Cavender-Bares, J., D. D. Ackerly, D. A. Baum & F. A. Bazzaz, 2004. Phylogenetic overdispersion in Floridian oak communities. American Naturalist 163: 823–843.PubMedGoogle Scholar
  17. Cavender-Bares, J., K. H. Kozak, P. V. A. Fine & S. W. Kembel, 2009. The merging of community ecology and phylogenetic biology. Ecology Letters 12: 693–715.PubMedGoogle Scholar
  18. Chisholm, S. W., 1992. Phytoplankton size. In Falkowski, P. G. & A. D. Woodhead (eds), Primary Productivity and Biogeochemical Cycles in the Sea. Plenum Press, New York: 213–237.Google Scholar
  19. Cho, S. H., S.-C. Ji, S. B. Hur, J. Bae, I.-S. Park & Y.-C. Song, 2007. Optimum temperature and salinity conditions for growth of green algae Chlorella ellipsoidea and Nannochloris oculata. Fisheries Science 73: 1050–1056.Google Scholar
  20. Dakos, V., E. Beninca, E. H. van Nes, C. J. M. Philippart, M. Scheffer & J. Huisman, 2009. Interannual variability in species composition explained as seasonally entrained chaos. Proceedings of the Royal Society B-Biological Sciences 276: 2871–2880.Google Scholar
  21. De Stasio, B. T., D. K. Hill, J. M. Kleinhans & N. P. Nibbelink, 1996. Potential effects of global climate change on small North-temperate lakes: physics, fish, and plankton. Limnology and Oceanography 41: 1136–1149.Google Scholar
  22. de Tezanos Pinto, P. & E. Litchman, 2010a. The interactive effects of N:P ratios and light on nitrogen-fixer abundance. Oikos 119: 567–575.Google Scholar
  23. de Tezanos Pinto, P. & E. Litchman, 2010b. Eco-physiological responses of nitrogen-fixing cyanobacteria to light. Hydrobiologia 639: 63–68.Google Scholar
  24. Diaz, S., J. G. Hodgson, K. Thompson, M. Cabido, J. H. C. Cornelissen, A. Jalili, G. Montserrat-Marti, J. P. Grime, F. Zarrinkamar, Y. Asri, S. R. Band, S. Basconcelo, P. Castro-Diez, G. Funes, B. Hamzehee, M. Khoshnevi, N. Perez-Harguindeguy, M. C. Perez-Rontome, F. A. Shirvany, F. Vendramini, S. Yazdani, R. Abbas-Azimi, A. Bogaard, S. Boustani, M. Charles, M. Dehghan, L. de Torres-Espuny, V. Falczuk, J. Guerrero-Campo, A. Hynd, G. Jones, E. Kowsary, F. Kazemi-Saeed, M. Maestro-Martinez, A. Romo-Diez, S. Shaw, B. Siavash, P. Villar-Salvador & M. R. Zak, 2004. The plant traits that drive ecosystems: evidence from three continents. Journal of Vegetation Science 15: 295–304.Google Scholar
  25. Elser, J. J., M. E. S. Bracken, E. E. Cleland, D. S. Gruner, W. S. Harpole, H. Hillebrand, J. T. Ngai, E. W. Seabloom, J. B. Shurin & J. E. Smith, 2007. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters 10: 1135–1142.PubMedGoogle Scholar
  26. Eppley, R. W., 1972. Temperature and phytoplankton growth in the sea. Fishery Bulletin National Oceanic and Atmospheric Administration 70: 1063–1085.Google Scholar
  27. Follows, M. J., S. Dutkiewicz, S. Grant & S. W. Chisholm, 2007. Emergent biogeography of microbial communities in a model ocean. Science 315: 1843–1846.PubMedGoogle Scholar
  28. Fox, J. W. & D. A. Vasseur, 2008. Character convergence under competition for nutritionally essential resources. American Naturalist 172: 667–680.PubMedGoogle Scholar
  29. Foy, R. H. & C. E. Gibson, 1993. The influence of irradiance, photoperiod and temperature on the growth kinetics of three planktonic diatoms. European Journal of Phycology 28: 203–212.Google Scholar
  30. Franks, P. J. S., 2002. NPZ models of plankton dynamics: their construction, coupling to physics, and application. Journal of Oceanography 58: 379–387.Google Scholar
  31. Gaedke, U., A. Seifried & R. Adrian, 2004. Biomass size spectra and plankton diversity in a shallow eutrophic lake. International Review of Hydrobiology 89: 1–20.Google Scholar
  32. Geritz, S. A. H., E. Kisdi, G. Meszena & J. A. J. Metz, 1998. Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree. Evolutionary Ecology 12: 35–57.Google Scholar
  33. Grover, J. P., 1991. Resource competition in a variable environment: phytoplankton growing according to the variable-internal-stores model. American Naturalist 138: 811–835.Google Scholar
  34. Grover, J. P. & T. H. Chrzanowski, 2006. Seasonal dynamics of phytoplankton in two warm temperate reservoirs: association of taxonomic composition with temperature. Journal of Plankton Research 28: 1–17.Google Scholar
  35. Huisman, J., N. N. P. Thi, D. M. Karl & B. Sommeijer, 2006. Reduced mixing generates oscillations and chaos in the oceanic deep chlorophyll maximum. Nature 439: 322–325.PubMedGoogle Scholar
  36. Hutchinson, G. E., 1959. Homage to Santa Rosalia or why are there so many kinds of animals. American Naturalist 93: 145–159.Google Scholar
  37. Ignatiades, L. & T. J. Smayda, 1970. Autecological studies on the marine diatom Rhizosolenia fragilissima Bergon. I. The influence of light, temperature, and salinity. Journal of Phycology 6: 332–339.Google Scholar
  38. Jöhnk, K. D., J. Huisman, J. Sharples, B. Sommeijer, P. M. Visser & J. M. Stroom, 2008. Summer heatwaves promote blooms of harmful cyanobacteria. Global Change Biology 14: 495–512.Google Scholar
  39. Karentz, D. & T. J. Smayda, 1984. Temperature and seasonal occurrence patterns of 30 dominant phytoplankton species in Narragansett Bay over a 22-year period (1959–1980). Marine Ecology-Progress Series 18: 277–293.Google Scholar
  40. Karp-Boss, L., E. Boss & P. A. Jumars, 1996. Nutrient fluxes to planktonic osmotrophs in the presence of fluid motion. Oceanography and Marine Biology 34: 71–107.Google Scholar
  41. Kenesi, G., H. M. Shafik, A. W. Kovacs, S. Herodek & M. Presing, 2009. Effect of nitrogen forms on growth, cell composition and N-2 fixation of Cylindrospermopsis raciborskii in phosphorus-limited chemostat cultures. Hydrobiologia 623: 91–202.Google Scholar
  42. Kirk, J. T. O., 1994. Light and Photosynthesis in Aquatic Ecosystems. Cambridge University Press, Cambridge: 509.Google Scholar
  43. Komárek, J. & J. Ruzicka, 1969. Effect of temperature on the growth and variability of Scenedesmus quadricauda (Turp.) BrÈb. In Fott, B. (ed.), Studies in Phycology. Academia, Prague: 262–292.Google Scholar
  44. Kruk, C., V. L. M. Huszar, E. Peeters, S. Bonilla, L. Costa, M. Lurling, C. S. Reynolds & M. Scheffer, 2010. A morphological classification capturing functional variation in phytoplankton. Freshwater Biology 55: 614–627.Google Scholar
  45. Lavorel, S. & E. Garnier, 2002. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Functional Ecology 16: 545–556.Google Scholar
  46. Le Quéré, C., S. P. Harrison, I. C. Prentice, E. T. Buitenhuis, O. Aumont, L. Bopp, H. Claustre, L. C. Da Cunha, R. Geider, X. Giraud, C. Klaas, K. E. Kohfeld, L. Legendre, M. Manizza, T. Platt, R. B. Rivkin, S. Sathyendranath, J. Uitz, A. J. Watson & D. Wolf-Gladrow, 2005. Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models. Global Change Biology 11: 2016–2040.Google Scholar
  47. Leibold, M. A., 1996. A graphical model of keystone predators in food webs: trophic regulation of abundance, incidence, and diversity patterns in communities. American Naturalist 147: 784–812.Google Scholar
  48. Lewis, L. A. & P. O. Lewis, 2005. Unearthing the molecular phylodiversity of desert soil green algae (Chlorophyta). Systematic Biology 54: 936–947.PubMedGoogle Scholar
  49. Lewis, W. M., 1978. Dynamics and succession of the phytoplankton in a tropical Lake: Lake Lanao, Philippines. Journal of Ecology 66: 849–880.Google Scholar
  50. Litchman, E., 2003. Competition and coexistence of phytoplankton under fluctuating light: experiments with two cyanobacteria. Aquatic Microbial Ecology 31: 241–248.Google Scholar
  51. Litchman, E. & C. A. Klausmeier, 2001. Competition of phytoplankton under fluctuating light. American Naturalist 157: 170–187.PubMedGoogle Scholar
  52. Litchman, E. & C. A. Klausmeier, 2008. Trait-based community ecology of phytoplankton. Annual Review of Ecology, Evolution, and Systematics 39: 615–639.Google Scholar
  53. Litchman, E., C. A. Klausmeier, J. R. Miller, O. M. Schofield & P. G. Falkowski, 2006. Multi-nutrient, multi-group model of present and future oceanic phytoplankton communities. Biogeosciences 3: 585–606.Google Scholar
  54. Litchman, E., C. A. Klausmeier, O. M. Schofield & P. G. Falkowski, 2007. The role of functional traits and trade-offs in structuring phytoplankton communities: scaling from cellular to ecosystem level. Ecology Letters 10: 1170–1181.PubMedGoogle Scholar
  55. Litchman, E., C. A. Klausmeier & K. Yoshiyama, 2009. Contrasting size evolution in marine and freshwater diatoms. Proceedings of the National Academy of Sciences of the United States of America 106: 2665–2670.PubMedGoogle Scholar
  56. Maddux, W. S. & R. F. Jones, 1964. Some interactions of temperature, light intensity, and nutrient concentration during the continuous culture of Nitzschia closterium and Tetraselmis sp. Limnology and Oceanography 9: 79–86.Google Scholar
  57. Magnuson, J. J., K. E. Webster, R. A. Assel, C. J. Bowser, P. J. Dillon, J. G. Eaton, H. E. Evans, E. J. Fee, R. I. Hall, L. R. Mortsch, D. W. Schindler & F. H. Quinn, 1997. Potential effects of climate changes on aquatic systems: Laurentian Great Lakes and Precambrian Shield Region. Hydrological Processes 11: 825–871.Google Scholar
  58. Marba, N., C. M. Duarte & S. Agusti, 2007. Allometric scaling of plant life history. Proceedings of the National Academy of Sciences of the United States of America 104: 15777–15780.PubMedGoogle Scholar
  59. Margalef, R., 1978. Life forms of phytoplankton as survival alternatives in an unstable environment. Oceanologica Acta 1: 493–509.Google Scholar
  60. Martin, A. P., 2002. Phylogenetic approaches for describing and comparing the diversity of microbial communities. Applied Environmental Microbiology 68: 3673–3682.Google Scholar
  61. McGill, B. J., B. J. Enquist, E. Weiher & M. Westoby, 2006. Rebuilding community ecology from functional traits. Trends in Ecology & Evolution 21: 178–185.Google Scholar
  62. Merico, A., J. Bruggeman & K. Wirtz, 2009. A trait-based approach for downscaling complexity in plankton ecosystem models. Ecological Modelling 220: 3001–3010.Google Scholar
  63. Montagnes, D. J. S. & D. J. Franklin, 2001. Effect of temperature on diatom volume, growth rate, and carbon and nitrogen content: reconsidering some paradigms. Limnology and Oceanography 46: 2008–2018.Google Scholar
  64. Montagnes, D. J. S., G. Morgan, J. E. Bissinger, D. Atkinson & T. Weisse, 2008. Short-term temperature change may impact freshwater carbon flux: a microbial perspective. Global Change Biology 14: 2823–2838.Google Scholar
  65. Munk, W. H. & G. A. Riley, 1952. Absorption of nutrients by aquatic plants. Journal of Marine Research 11: 215–240.Google Scholar
  66. Naselli-Flores, L. & R. Barone, 2007. Pluriannual morphological variability of phytoplankton in a highly productive Mediterranean reservoir (Lake Arancio, Southwestern Sicily). Hydrobiologia 578: 87–95.Google Scholar
  67. Naselli-Flores, L., J. Padisak & M. Albay, 2007. Shape and size in phytoplankton ecology: do they matter? Hydrobiologia 578: 157–161.Google Scholar
  68. Noges, T., R. Laugaste, P. Noges & I. Tonno, 2008. Critical N:P ratio for cyanobacteria and N-2-fixing species in the large shallow temperate lakes Peipsi and Vortsjarv, North-East Europe. Hydrobiologia 599: 77–86.Google Scholar
  69. Norberg, J., D. P. Swaney, J. Dushoff, J. Lin, R. Casagrandi & S. A. Levin, 2001. Phenotypic diversity and ecosystem functioning in changing environments: a theoretical framework. Proceedings of the National Academy of Sciences of the United States of America 98: 11376–11381.PubMedGoogle Scholar
  70. Novak, J. T. & D. E. Brune, 1985. Inorganic carbon limited growth kinetics of some freshwater algae. Water Research 19: 215–225.Google Scholar
  71. O’Farrell, I., P. de Tezanos Pinto & I. Izaguirre, 2007. Phytoplankton morphological response to the underwater light condition in a vegetated wetland. Hydrobiologia 578: 65–77.Google Scholar
  72. Paerl, H. W. & J. Huisman, 2009. Climate change: a catalyst for global expansion of harmful cyanobacterial blooms. Environmental Microbiology Reports 1: 27–37.Google Scholar
  73. Pahlow, M., U. Riebesell & D. A. Wolf-Gladrow, 1997. Impact of cell shape and chain formation on nutrient acquisition by marine diatoms. Limnology and Oceanography 42: 1660–1672.Google Scholar
  74. Pasciak, W. J. & J. Gavis, 1974. Transport limitation of nutrient uptake in phytoplankton. Limnology and Oceanography 19: 881–889.Google Scholar
  75. Petchey, O. L. & K. J. Gaston, 2007. Dendrograms and measuring functional diversity. Oikos 116: 1422–1426.Google Scholar
  76. Peters, R. H., 1983. The Ecological Implications of Body Size. Cambridge University Press, Cambridge: 329.Google Scholar
  77. Platt, T. & K. Denman, 1978. The structure of pelagic marine ecosystems. Rapports et Proces-Verbaux des Reunions, Conseil International pour L'Exploration scientifique de la Mer Medeterranee 173: 60–65.Google Scholar
  78. Reynolds, C. S., 1984. The Ecology of Freshwater Phytoplankton. Cambridge University Press, Cambridge.Google Scholar
  79. Reynolds, C. S., 1988. Functional morphology and the adaptive strategies of freshwater phytoplankton. In Sandgren, C. D. (ed.), Growth and Reproductive Strategies of Freshwater Phytoplankton. Cambridge University Press, Cambridge: 388–433.Google Scholar
  80. Reynolds, C. S., 2006. The Ecology of Phytoplankton. Cambridge University Press, Cambridge: 550.Google Scholar
  81. Reynolds, C. S., V. Huszar, C. Kruk, L. Naselli-Flores & S. Melo, 2002. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research 24: 417–428.Google Scholar
  82. Richardson, T. L., C. E. Gibson & S. I. Heaney, 2000. Temperature, growth and seasonal succession of phytoplankton in Lake Baikal, Siberia. Freshwater Biology 44: 431–440.Google Scholar
  83. Robarts, R. D. & T. Zohary, 1987. Temperature effects on photosynthetic capacity, respiration, and growth rates of bloom-forming cyanobacteria. New Zealand Journal of Marine and Freshwater Research 21: 391–399.Google Scholar
  84. Rojo, C., 1998. Differential attributes of phytoplankton across the trophic gradient: a conceptual landscape with gaps. Hydrobiologia 368(370): 1–9.Google Scholar
  85. Savage, V. M., C. T. Webb & J. Norberg, 2007. A general multi-trait-based framework for studying the effects of biodiversity on ecosystem functioning. Journal of Theoretical Biology 247: 213–229.PubMedGoogle Scholar
  86. Schwaderer, A. S., K. Yoshiyama, P. de Tezanos Pinto, N. G. Swenson, C. A. Klausmeier & E. Litchman, submitted. Eco-evolutionary patterns in light utilization traits and distribution of phytoplankton. Limnology and Oceanography.Google Scholar
  87. Senft II, W. H., R. A. Hunchberger & K. E. Roberts, 1981. Temperature dependence of growth and phosphorus uptake in two species of Volvox (Volvocales, Chlorophyta). Journal of Phycology 17: 323–329.Google Scholar
  88. Smetacek, V., 2001. A watery arms race. Nature 411: 745.PubMedGoogle Scholar
  89. Sommer, U., 1984. The paradox of the plankton: fluctuations of phosphorus availability maintain diversity of phytoplankton in flow-through cultures. Limnology and Oceanography 29: 633–636.Google Scholar
  90. Sommer, U., 1988. Growth and survival strategies of planktonic diatoms. In Sandgren, C. D. (ed.), Growth and Reproductive Strategies of Freshwater Phytoplankton. Cambridge University Press, Cambridge: 227–259.Google Scholar
  91. Sommer, U., Z. M. Gliwicz, W. Lampert & A. Duncan, 1986. The PEG-model of seasonal succession of planktonic events in fresh waters. Archiv für Hydrobiologie 106: 433–471.Google Scholar
  92. Sosik, H. M. & B. G. Mitchell, 1994. Effects of temperature on growth, light absorption, and quantum yield in Dunaliella tertiolecta (Chlorophyceae). Journal of Phycology 30: 833–840.Google Scholar
  93. Stolte, W. & R. Riegman, 1996. A model approach for size-selective competition of marine phytoplankton for fluctuating nitrate and ammonium. Journal of Phycology 32: 732–740.Google Scholar
  94. Stomp, M., J. Huisman, F. de Jongh, A. J. Veraart, D. Gerla, M. Rijkeboer, B. W. Ibelings, U. I. A. Wollenzien & L. J. Stal, 2004. Adaptive divergence in pigment composition promotes phytoplankton biodiversity. Nature 432: 104–107.PubMedGoogle Scholar
  95. Sunda, W. G., E. Graneli & C. J. Gobler, 2006. Positive feedback and the development and persistence of ecosystem disruptive algal blooms. Journal of Phycology 42: 963–974.Google Scholar
  96. Suzuki, Y. & M. Takahashi, 1995. Growth responses of several diatom species isolated from various environments to temperature. Journal of Phycology 31: 880–888.Google Scholar
  97. Thingstad, T. F., L. Ovreas, J. K. Egge, T. Lovdal & M. Heldal, 2005. Use of non-limiting substrates to increase size; a generic strategy to simultaneously optimize uptake and minimize predation in pelagic osmotrophs? Ecology Letters 8: 675–682.Google Scholar
  98. Tilman, D., 1982. Resource Competition and Community Structure. Princeton University Press, Princeton, NJ.Google Scholar
  99. Webb, C. O., D. D. Ackerly, M. A. McPeek & M. J. Donoghue, 2002. Phylogenies and community ecology. Annual Review of Ecology and Systematics 33: 475–505.Google Scholar
  100. Weithoff, G., 2003. The concepts of ‘plant functional types’ and ‘functional diversity’ in lake phytoplankton – a new understanding of phytoplankton ecology? Freshwater Biology 48: 1669–1675.Google Scholar
  101. Westoby, M. & I. J. Wright, 2006. Land-plant ecology on the basis of functional traits. Trends in Ecology & Evolution 21: 261–268.Google Scholar
  102. Weyhenmeyer, G. A., E. Jeppesen, R. Adrian, L. Arvola, T. Blenckner, T. Jankowski, E. Jennings, P. Noges, T. Noges & D. Straile, 2007. Nitrate-depleted conditions on the increase in shallow northern European lakes. Limnology and Oceanography 52: 1346–1353.Google Scholar
  103. Yoshiyama, K. & C. A. Klausmeier, 2008. Optimal cell size for resource uptake in fluid: a new facet of resource competition. American Naturalist 171: 59–70.PubMedGoogle Scholar
  104. Yoshiyama, K., J. P. Mellard, E. Litchman & C. A. Klausmeier, 2009. Phytoplankton competition for nutrients and light in a stratified water column. American Naturalist 174: 190–203.PubMedGoogle Scholar
  105. Zargar, S., K. Krishnamurthi, S. Saravanadevi, T. K. Ghosh & T. Chakrabarti, 2006. Temperature-induced stress on growth and expression of Hsp in freshwater alga Scenedesmus quadricauda. Biomedical and Environmental Sciences 19: 414–421.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Elena Litchman
    • 1
  • Paula de Tezanos Pinto
    • 1
  • Christopher A. Klausmeier
    • 1
  • Mridul K. Thomas
    • 1
  • Kohei Yoshiyama
    • 2
  1. 1.W. K. Kellogg Biological StationMichigan State UniversityHickory CornersUSA
  2. 2.Ocean Research InstituteUniversity of TokyoTokyoJapan

Personalised recommendations