, Volume 651, Issue 1, pp 253–264 | Cite as

Water level fluctuations may decrease phosphate adsorption capacity of the sediment in oligotrophic high mountain lakes

  • Inmaculada de Vicente
  • Frede Østergaard Andersen
  • Hans Christian Bruun Hansen
  • Luis Cruz-Pizarro
  • Henning Skovgaard Jensen
Primary research paper


The effect of sediment desiccation and re-wetting on phosphate adsorption and desorption properties was examined in two oligotrophic high mountain lakes (La Caldera and Río Seco, altitude ~3000 m) in the Sierra Nevada National Park, Spain. Decrease in phosphate sorption properties was observed in transects from the littoral zone to dry land (up to the high water mark) in both lakes concomitantly with loss of amorphous oxides of iron and aluminum as revealed by oxalate and dithionite extractions. X-ray diffraction did not indicate increased amounts of crystalline metal oxides, but there was a loss of fine particles (<20 μm) with distance from the shore, probably due to wind erosion. Likely this explains the loss of amorphous metal oxides as they are often enriched in the fine sediment fraction. Changes in P-speciation toward less available pools were also observed as a result of desiccation. When re-wetted under oxic conditions, the sediments, especially those closest to the shore, released phosphate to the overlying water. The loss of adsorption capacity for phosphate upon re-wetting was associated with loss of amorphous iron oxides, and the changes appear to be non-reversible. Thus, both desiccation and re-wetting will lead to a decrease in sediment phosphate sorption capacity and increased water level fluctuations, a possible scenario in climate change, can therefore increase P availability in the water column of these oligotrophic systems.


Phosphorus P-release Metal oxides Desiccation Climate change 



This research was supported by the project OAPN 129 A/2003 (Environmental Ministry of Spain), The Villum Kann Rasmussen Centre for Lake Restoration (CLEAR), and by Grant #21020463 from the Danish Natural Science Research Council. We thank F. Rueda and A. Rigosi for skilled sampling assistance.


  1. Baldwin, D. S., 1996. Effects of exposure to air and subsequent drying on the phosphate sorption characteristics of sediments from a eutrophic reservoir. Limnology and Oceanography 41: 1725–1732.CrossRefGoogle Scholar
  2. Baldwin, D. S. & A. M. Mitchell, 2000. The effects of drying and re-flooding on the sediment and soil nutrient dynamics of lowland river-floodplain systems: a synthesis. Regulated Rivers: Research and Management 16: 457–467.CrossRefGoogle Scholar
  3. Barrow, N. & T. C. Shaw, 1980. Effect of drying soil on the measurement of phosphate adsorption. Communications in Soil Science and Plant Analysis 11: 347–353.CrossRefGoogle Scholar
  4. Carrillo, P., J. M. Medina-Sánchez & M. Villar-Argáiz, 2002. The interaction of phytoplankton and bacteria in a high mountain lake: importance of the spectral composition of solar radiation. Limnology and Oceanography 47: 1294–1306.Google Scholar
  5. Coops, H., M. Beklioglu & T. L. Crisman, 2003. The role of water-level fluctuations in shallow lake ecosystems-workshop conclusions. Hydrobiologia 506–509: 23–27.CrossRefGoogle Scholar
  6. Cruz-Pizarro, L., 1981. Estudio de la comunidad zooplanctónica de un lago de alta montaña (La Caldera, Sierra Nevada, Granada). PhD Thesis, University of Granada, Granada.Google Scholar
  7. Cruz-Pizarro, L. & P. Carrillo, 1996. A high mountain oligotrophic lake (La Caldera, Sierra Nevada, Spain). In Cruz-Sanjulián, J. & J. Benavente (eds), Wetlands: A Multiapproach Perspective. Water Research Institute, University of Granada, Granada: 111–130.Google Scholar
  8. Day, P. R., 1965. Particle fractionation and particle-size analysis. In Black, C. A. (ed.), Methods of Soil Analysis (Part 1), 1st edn. Agronomy Series No. 9. American Society for Agronomy, Madison, WI, USA.Google Scholar
  9. De Groot, C. J. & A. Fabre, 1993. The impact of desiccation of a freshwater marsh (Garcines Nord, Camargue, France) on sediment-water-vegetation interactions. Part 3. The fractional composition and the phosphate adsorption characteristics of the sediment. Hydrobiologia 252: 105–116.Google Scholar
  10. De Groot, C. J. & C. Van Wijck, 1993. The impact of desiccation of a freshwater marsh (Garcines Nord, Camargue, France) on sediment-water-vegetation interactions. Part 1. The sediment chemistry. Hydrobiologia 252: 83–94.Google Scholar
  11. Dean, W. E., Jr., 1974. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition compared with other methods. Journal of Sedimentary Petrology 44: 242–248.Google Scholar
  12. Delgado-Molina, J. A., 2008. Efectos interactivos de radiación UV y pulsos de nutrientes sobre la red trófica microbiana: aproximación estructural, estequiométrica y funcional. PhD Thesis, University of Granada, Granada.Google Scholar
  13. Gibbs, M. M., 1979. Simple method for the rapid determination of iron in natural waters. Water Research 13: 295–297.CrossRefGoogle Scholar
  14. Hansen, H. P. & F. Koroleff, 1999. Determination of nutrients. In Grasshoff, K., K. Kremling & M. Ehrhardt (eds), Methods of Seawater Analysis. Wiley-VCH, Weinheim, Germany.Google Scholar
  15. Haynes, R. J. & R. S. Swift, 1985. Effects of air-drying on the adsorption and desorption of phosphate and levels of extractable phosphate in a group of New Zealand acid soils. Geoderma 35: 145–157.CrossRefGoogle Scholar
  16. Jensen, H. S. & B. Thamdrup, 1993. Iron-bound phosphorus in marine sediments as measured by bicarbonate-dithionite extraction. Hydrobiologia 253: 47–59.CrossRefGoogle Scholar
  17. Lijklema, L., 1980. Interaction of orthophosphate with iron (III) and aluminium hydroxides. Environmental Science and Technology 14: 537–541.CrossRefGoogle Scholar
  18. Medina-Sánchez, J. M., M. Villar-Argaiz & P. Carrillo, 2002. Modulation of the bacterial response to spectral solar radiation by algae and limiting nutrients. Freshwater Biology 47: 2191–2204.CrossRefGoogle Scholar
  19. Morales-Baquero, R., P. Carrillo, I. Reche & P. Sánchez-Castillo, 1999. Nitrogen-phosphorus relationship in high mountain lakes: effects of the size of catchment basins. Canadian Journal of Fisheries and Aquatic Sciences 56: 1809–1817.CrossRefGoogle Scholar
  20. Paludan, C. & H. S. Jensen, 1995. Sequential extraction of phosphorus in freshwater wetland and lake sediments. Significance of humic acids. Wetlands 15: 365–373.CrossRefGoogle Scholar
  21. Psenner, R., R. Pucsko & M. Sager, 1984. Die fraktionerung organischer und anorganischer phosphorverbindungen von sedimenten. Archiv für Hydrobiologie – Supplement 70: 111–155.Google Scholar
  22. Pulido-Villena, E., 2004. El papel de la deposicion atmosferica en la biogeoquimica de lagunas de alta montaña (Sierra Nevada, España). PhD Thesis, University of Granada, Granada.Google Scholar
  23. Pulido-Villena, E., E. Ortega-Retuerta, R. Morales-Baquero & I. Reche, 2003. El papel de la escala en los patrones de variación del bacterioplancton en lagunas de alta montaña. Limnetica 22: 183–193.Google Scholar
  24. Qiu, S. & A. J. McComb, 2002. Interrelations between iron extractability and phosphate sorption in reflooded air-dried sediments. Hydrobiologia 472: 39–44.CrossRefGoogle Scholar
  25. Reche, I., E. Pulido-Villena, J. M. Conde-Porcuna & P. Carrillo, 2001. Photoreactivity of dissolved organic matter from high-mountain lakes of Sierra Nevada, Spain. Arctic Antarctic and Alpine Research 33: 426–434.CrossRefGoogle Scholar
  26. Rodríguez-Rodríguez, M., E. Moreno-Ostos, I. de Vicente, L. Cruz-Pizarro & S. L. Rodrigues da Silva, 2004. Thermal structure and energy budget in a small high mountain lake: La Caldera, Sierra Nevada, Spain. New Zealand Journal of Marine and Freshwater Research 38: 879–894.CrossRefGoogle Scholar
  27. Schwertmann, U., 1964. Differenzierung der Eisenoxide des Bodens durch Extraktion mit Ammoniumoxalat-Lösung. Zeitschrift für Pflanzenernährung, Düngung under Bodenkunde. 105: 194–202.CrossRefGoogle Scholar
  28. Selig, U., 2003. Particle size-related phosphate binding and P-release at the sediment–water interface in a shallow German lake. Hydrobiologia 492: 107–118.CrossRefGoogle Scholar
  29. Systat Software, 2002. Systat Software, Inc., 1735, Technology Drive, Ste 430, San Jose, CA 95110, USA.Google Scholar
  30. Twinch, A. J., 1987. Phosphate exchange characteristics of wet and dried sediment samples from a hypertrophic reservoir: implications for the measurements of sediment phosphorus status. Water Research 21: 1225–1230.CrossRefGoogle Scholar
  31. Van Dam, J. C., 1999. Impact of Climate Change and Climate Variability on Hydrological Regimes. International Hydrology Series. Cambridge University Press, Cambridge: 156 ppGoogle Scholar
  32. Villar-Argaiz, M., J. M. Medina-Sánchez, L. Cruz-Pizarro & P. Carrillo, 2001. Inter- and intra-annual variability in the phytoplankton community of a high mountain lake: the influence of external (atmospheric) and internal (recycled) sources of phosphorus. Freshwater Biology 46: 1017–1034.CrossRefGoogle Scholar
  33. Villar-Argaiz, M., J. M. Medina-Sánchez & P. Carrillo, 2002. Microbial plankton response to contrasting climatic conditions: insights from community structure, productivity and fraction stoichiometry. Aquatic Microbial Ecology 29: 253–266.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Inmaculada de Vicente
    • 1
    • 2
  • Frede Østergaard Andersen
    • 1
  • Hans Christian Bruun Hansen
    • 3
  • Luis Cruz-Pizarro
    • 2
  • Henning Skovgaard Jensen
    • 1
  1. 1.Institute of BiologyUniversity of Southern DenmarkOdense MDenmark
  2. 2.Water Research InstituteUniversity of GranadaGranadaSpain
  3. 3.Department of Basic Sciences and Environment, Faculty of Life SciencesUniversity of CopenhagenFrederiksberg CDenmark

Personalised recommendations