, Volume 651, Issue 1, pp 39–58 | Cite as

Development of the HKHbios: a new biotic score to assess the river quality in the Hindu Kush-Himalaya

  • Thomas Ofenböck
  • Otto Moog
  • Subodh Sharma
  • Thomas Korte


Within the ASSESS-HKH project (Development of an Assessment System to Evaluate the Ecological Status of Rivers in the Hindu Kush-Himalayan (HKH) region—a research project funded by the European Union; contract number: INCO-CT-2005-003659) a benthic invertebrate-based scoring system (HKHbios; Hindu Kush-Himalayan biotic score) was developed. The development was based on multi-habitat samples from 198 sampling sites located in five ecoregions and five Asian countries (Bangladesh, Bhutan, India, Nepal and Pakistan) taken in two different seasons (pre- and post-monsoon). Environmental and biological screening data were used to select macro-invertebrates as indicators for the ecological river quality. Taxa scores were assigned based on the range and distribution patterns of taxa amongst different degrees of impact and on available autecological information. In total, 199 taxa were scored for the HKHbios, which is calculated a weighted average score per taxon (ASPT). The range of the index values under different degrees of stress was evaluated and a five-class quality assessment system was generated for each ecoregion. Correlation analysis between the HKHbios, 38 selected environmental parameters and complex PCA gradients were used to test the response of the HKHbios to different kinds of impact.


Benthic invertebrates River quality assessment Biotic score Bio-indicator Organic pollution ASSESS-HKH 



We would like to thank the European Commission for the financial support to the ASSESS-HKH project (contract number: INCO-CT-2005-003659). In addition we thank all institutions from the partner countries for their contributions to the development of the HKHbios, namely the National Environment Commission Secretariat (NECS) in Thimphu, Bhutan, the Department of Water Resources Engineering and the Department of Civil Engineering at the Bangladesh University of Engineering and Technology in Dhaka, Bangladesh, the Alternate Hydro Energy Centre (AHEC) of the Indian Institute of Technology (IITRoorkee) in Roorkee, India, the Aquatic Ecology Centre (AEC) at the Kathmandu University in Dhulikhel, Nepal, the International Center for Integrated Mountain Development (ICIMOD) in Kathmandu, Nepal, the Pakistan Council of Research in Water Resources in Islamabad, Pakistan, and the Department of Botany and Zoology at the Masaryk University in Brno, Czech Republic. Finally, we thank Wolfram Graf (BOKU, Vienna) and two anonymous reviewers for various useful comments and recommendations.


  1. Armitage, P. D., D. Moss, J. F. Wright & M. T. Furse, 1983. The performance of a new biological water quality score system based on macroinvertebrates over a wide range of unpolluted running-water sites. Water Research 17: 333–347.CrossRefGoogle Scholar
  2. ASSESS-HKH Consortium, 2008. HKH site protocol: 3 pp [].
  3. Barbour, M. T. & M. J. Paul, this issue. Adding value to water resource management through biological assessment of rivers. Hydrobiologia. doi: 10.1007/s10750-010-0287-7.
  4. Barbour, M. T., J. Gerritsen, B. D. Snyder & J. B. Stribling, 1999. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish, 2nd edn. EPA 841-B-99-002. U.S. Environmental Protection Agency, Office of Water, Washington, DC.Google Scholar
  5. Birk, S. & D. Hering, 2002. Waterview Web-Database – A Comprehensive Review of European Assessment Methods for Rivers. FBA News No. 20, Winter 2002. Freshwater Biological Association, Ambleside: 4.Google Scholar
  6. Brooks, A. J., T. Haesler, I. Reinfelds & S. Williams, 2005. Hydraulic microhabitats and the distribution of macroinvertebrate assemblages in riffles. Freshwater Biology 50: 331–344.CrossRefGoogle Scholar
  7. Cohn, F., 1853. Über lebendige Organismen im Trinkwasser. Zeitschrift für klinische Medizin 4: 229–237.Google Scholar
  8. Downes, B. J., P. S. Lake, E. S. G. Schreiber & A. Glaister, 2000. Habitat structure, resources and diversity: the separate effects of surface roughness and macroalgae on stream invertebrates. Oecologia 123: 569–581.CrossRefGoogle Scholar
  9. Drake, J. A., 1984. Species aggregation: the influence of detritus in a benthic invertebrate community. Hydrobiologia 112: 109–115.CrossRefGoogle Scholar
  10. European Union, 2000. Directive of the European Parliament and of the Council Establishing a Framework for Community Action in the Field of Water Policy. Legislative Acts and Other Instruments. ENV221 CODEC 513. European Union.Google Scholar
  11. Feld, C., 2004. Identification and measure of hydromorphological degradation in Central European lowland streams. Hydrobiologia 516: 69–90.CrossRefGoogle Scholar
  12. Fishar, M. R. & W. P. Williams, 2008. The development of a Biotic Pollution Index for the River Nile in Egypt. Hydrobiologia 598: 17–34.CrossRefGoogle Scholar
  13. FPAN-DISVI, 1988. Pollution monitoring of Bagmati River, preliminary report. FPAN-DISVI project, Kathmandu, Nepal: 1–27.Google Scholar
  14. Gerritsen, J., M. T. Barbour & K. King, 2000. Apples, oranges, and ecoregions: on determining pattern in aquatic assemblages. Journal of the North American Benthological Society 19(3): 487–496.CrossRefGoogle Scholar
  15. Hassal, A. A., 1850. A microscopic examination of the water supplied to the inhabitants of London and suburban districts. London.Google Scholar
  16. Heino, J., P. Louhi & T. Muotka, 2004. Identifying the scales of variability in stream macroinvertebrate abundance, functional composition and assemblage structure. Freshwater Biology 49: 1230–1239.CrossRefGoogle Scholar
  17. Hering, D., O. Moog, L. Sandin & P. F. M. Verdonschot, 2004. Overview and application of the AQEM assessment system. Hydrobiologia 516: 1–20.CrossRefGoogle Scholar
  18. Hering, D., R. K. Johnson, S. Kramm, S. Schmutz, K. Szoszkiewicz & P. F. M. Verdonschot, 2006. Assessment of European streams with diatoms, macrophytes, macroinvertebrates and fish: a comparative metric-based analysis of organism response to stress. Freshwater Biology 51(9): 1757–1785.CrossRefGoogle Scholar
  19. Hildrew, A. G. & C. R. Townsend, 1976. The distribution of two predators and their prey in an iron rich stream. Journal of Animal Ecology 45: 41–57.CrossRefGoogle Scholar
  20. Hutton, G. & L. Haller, 2004. Evaluation of the Costs and Benefits of Water and Sanitation Improvement on the Global Level. World Health Organization, Geneva.Google Scholar
  21. Karr, J. R., 1991. Biological integrity: a long-neglected aspect of water resource management. Ecological Applications 1: 66–84.CrossRefGoogle Scholar
  22. Karr, J. R. & E. W. Chu, 1999. Restoring Life in Running Waters: Better Biological Monitoring. Island Press, Washington, DC: 200 pp.Google Scholar
  23. Khanal, S. N. & O. Moog, 2003. Effect of stream poisoning disturbance on the benthic invertebrate fauna in a midhill stream in Nepal. Nepalese Journal of Science and Technology 5: 63–74.Google Scholar
  24. Kolenati, F. A., 1848. Über Nutzen und Schaden der Trichopteren. Stettiner entomologische Zeitung 9.Google Scholar
  25. Korte, T., A. B. M. Baki, T. Ofenböck, O. Moog, S. Sharma & D. Hering, 2010. Assessing river ecological quality with benthic macroinvertebrates in the Hindu Kush-Himalaya region. Hydrobiologia. doi: 10.1007/s10750-010-0290-z.
  26. Minshall, G. W. & J. N. Minshall, 1977. Microdistribution of benthic invertebrates in a Rocky Mountain stream. Hydrobiologia 55: 231–249.CrossRefGoogle Scholar
  27. Moog, O. & S. Sharma, 2005. Guidance for pre-classifying the ecological status of HKH rivers. Working paper within ASSESS-HKH: 26 pp [retrieved 9 September 2008 from].
  28. Moog, O., A. Chovanec, H. Hinteregger & A. Römer, 1999. Richtlinie für die saprobiologische Gewässergütebeurteilung von Fließgewässern. Wasserwirtschaftskataster, Bundesmin isterium für Land- und Forstwirtschaft, Wien: 144 pp.Google Scholar
  29. Moog, O., A. Schmidt-Kloiber, T. Ofenböck & J. Gerritsen, 2004. Does the ecoregion approach support the typological demands of the EU ‘Water Framework Directive’? Hydrobiologia 516(1): 1–33.CrossRefGoogle Scholar
  30. Murray-Bligh, J., 1999. Procedures for Collecting and Analysing Macroinvertebrate Samples, Quality Management Systems for Environmental Monitoring. Biological Techniques, BT001. Environment Agency, Bristol, UK.Google Scholar
  31. Nesemann, H. (ed.), S. Sharma, G. Sharma, S. N. Khanal, B. Pradhan, D. N. Shah & R. D. Tachamo, 2007. Aquatic Invertebrates of the Ganga River System (Mollusca, Annelida, Crustacea (in part)), Vol. 1: 263 pp. ISBN 978-99946-2-674-8.Google Scholar
  32. Ofenböck, T., O. Moog, J. Gerritsen & M. T. Barbour, 2004. A stressor specific multimetric approach for monitoring running waters in Austria using benthic macro-invertebrates. Hydrobiologia 516: 251–268.CrossRefGoogle Scholar
  33. Ofenböck, T., O. Moog, A. Hartmann & I. Stubauer, 2008. Leitfaden zur Erhebung der biologischen Qualitätselemente, Teil A2 – Makrozoobenthos. Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft, Wien: 215 pp [].
  34. Olson, D. M., E. Dinerstein, E. D. Wikramanaya, N. D. Burgess, G. V. N. Powell, E. C. Underwood, J. A. D’Amico, I. I. Hollye, S. J. C. Morrison, C. J. Loucks, T. F. Allnutt, T. H. Ricketts, Y. Kura, J. F. Lamoreux, W. W. Wettengel, P. Hedao & K. R. Kassem, 2001. Terrestrial ecoregions of the world: a new map of life on earth. BioScience 51(11): 933–938 [].Google Scholar
  35. Pittwell, L. R., 1976. Biological monitoring of rivers in the community, pp. 225–261. In Amavis, R. & J. Smeets (eds), Principles and Methods for Determining Ecological Criteria on Hydrobiocenoses. Pergamon Press, Oxford: 531 pp.Google Scholar
  36. Pradhan, B., 1998. Water Quality Assessment of the Bagmati River and Its Tributaries, Kathmandu Valley, Nepal. PhD Thesis, Department of Hydrobiology, Institute of Water Provision, Water Ecology and Waste Management, BOKU – University, Vienna, Austria: 22–25, 43–52, 123–169.Google Scholar
  37. Rosenberg, D. M. & A. P. Resh (eds), 1992. Freshwater Biomonitoring and Benthic Macroinvertebrates. Chapman and Hall, New York.Google Scholar
  38. Sharma, S. 1996. Biological Assessment of Water Quality in the Rivers of Nepal. PhD Thesis, University of Agriculture, Forestry and Renewable Natural Resources at Vienna, Austria: 398 pp.Google Scholar
  39. Sharma, S. & O. Moog, 1996. The applicability of biotic indices and scores in water quality assessment of Nepalese rivers. In Proceedings of the Ecohydrology Conference on High Mountain Areas, March 23–26, 1996, Kathmandu, Nepal: 641–657.Google Scholar
  40. Sharma, S. & O. Moog, 2005. A reference based Nepalese biotic score and its application in the midland hills and lowland plains for river water quality assessment and management. In Tripathi, R. D., K. Kulshrestha, M. Agrawal, K. J. Ahmed, C. K. Varsehen, Fripa, Sagar, P. Pushpangadan (eds), Proceedings Entitled Plant Response to Environmental Stress. IBD, CO, Publisher, Lucknow.Google Scholar
  41. Sládecék, V., 1973a. System of water quality from the biological point of view. Archiv für Hydrobiologie Beiheft 7: 1–218.Google Scholar
  42. Slàdecèk, V., 1973b. The reality of three British biotic indices. Water Research 7: 995–1002.CrossRefGoogle Scholar
  43. Stubauer, I., O. Moog, D. Hering, T. Korte, A. Hoffmann, K. Brabec, S. Sharma, M. Shrestha, M. A. Kahlown, M. A. Tahir, A. Kumar, M. P. Sharma, M. F. Bari, A. B. M. Badruzzaman & G. K. Chhopel, this issue. The development of an assessment system to evaluate the ecological status of rivers in the Hindu Kush-Himalayan Region: introduction to the special feature. Hydrobiologia. doi: 10.1007/s10750-010-0286-8.
  44. Woodiwiss, F. S., 1964. The biological system of stream classification used by the Trent River Board. Chemistry and Industry 11: 443–447.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Thomas Ofenböck
    • 1
  • Otto Moog
    • 1
  • Subodh Sharma
    • 2
  • Thomas Korte
    • 3
  1. 1.Department of Water, Atmosphere and EnvironmentUniversity of Natural Resources and Applied Life SciencesViennaAustria
  2. 2.Aquatic Ecology Centre, School of ScienceKathmandu UniversityKathmanduNepal
  3. 3.Department of Applied Zoology/Hydrobiology, Institute of BiologyUniversity of Duisburg-EssenEssenGermany

Personalised recommendations