, Volume 648, Issue 1, pp 189–205 | Cite as

Chemical and biological response of two small lakes in the Khumbu Valley, Himalayas (Nepal) to short-term variability and climatic change as detected by long-term monitoring and paleolimnological methods

  • Andrea Lami
  • Aldo Marchetto
  • Simona Musazzi
  • Franco Salerno
  • Gianni Tartari
  • Piero Guilizzoni
  • Michela Rogora
  • Gabriele A. Tartari


The most remote regions of the globe are home of the least disturbed ecosystems, yet they are threatened by air pollution and by climatic change. The Himalayas are one of the most isolated and least explored wilderness areas in the world outside the Polar Regions and it is for this reason that the Tibetan Plateau is often referred to as the ‘Third Pole’. Since 1990, an annual limnological survey (including chemistry and biology) has been carried out at two lakes located in the Kumbhu Valley, Nepal, at 5200 and 5400 m a.s.l., respectively. Lake water chemistry surveys reveal a persistent increase in the ionic content of the lake water, a trend which appears to be closely linked to increasing temperature. In this study, we also analysed lake sediment cores for historical changes in algal abundance and community composition to evaluate how long-term variations in primary producer communities corresponded to known regional variations in climate systems during the past 3500 years. Paleolimnological results support the evidence that the strong variability observed in the chemical data drives the variability in lake production and in the composition of algal assemblages. These variabilities can be related to known features of local climate and the values recorded in the recent years compare well with those recorded during warm periods, such as around 2000 BP, and thus support the idea that this area of the Himalayan Range, influenced by the South Asia monsoon, is closely linked to Northern Hemisphere climate dynamics.


Himalayas Lakes Limnology Paleolimnology Climatic change 



This study was carried out within the framework of the Ev-K²-CNR ‘Scientific and Technological Research in Himalayas and Karakorum’ Project with support from the Ev-K²-CNR Committee and in collaboration with the Royal Nepal Academy of Science and Technology (RONAST). The research was also made possible thanks to contributions from the Italian National Research Council (CNR) and the Italian Ministry of Foreign Affairs. Finally, we want to thank the two referees (Dr. L. Camarero and one anonymous) and Dr. F. Oldfield for their valuable comments to the text and for the revision of the English style.


  1. Ageta, Y., 1976. Characteristics of precipitation during monsoon season in Khumbu Himal. Seppyo 38: 84–88.Google Scholar
  2. Agrawala, S., V. Raksakulthai, M. van Aalst, P. Larsen, J. Smith & J. Reynolds, 2003. Development and Climate Change in Nepal. Focus on Water Resources and Hydropower. OECD, Paris, France: 64 pp.Google Scholar
  3. Aizaki, M., A. Terashima, H. Nakahara, T. Nishio & Y. Ishida, 1987. Trophic status of Tilitso, a high altitude Himalayan lake. Hydrobiologia 153: 217–224.Google Scholar
  4. Anthwal, A., V. Joshi, A. Sharma & S. Anthwal, 2006. Retreat of Himalayan glaciers – indicator of climate change. Nature and Science 4: 53–59.Google Scholar
  5. Battarbee, R. W., N. J. Anderson, E. Jeppesen & P. R. Leavitt, 2005. Combining palaeolimnological and limnological approaches in assessing lake ecosystem response to nutrient reduction. Freshwater Biology 50: 1772–1780.CrossRefGoogle Scholar
  6. Baudo, R., G. Tartari & M. Munawar, 1998. Top of the World Environmental Research: Mount Everest-Himalayan Ecosystem. Backhuys Publishers, Leiden: 290 pp.Google Scholar
  7. Baudo, R., J. F. Shroder, G. Tartari & E. Vuillermoz, 2007. Mountain Witnesses of Global Changes. Elsevier, Amsterdam, The Netherlands: 342 pp.Google Scholar
  8. Beine, H. J., M. Engardt, D. A. Jaffe, Ø. Hov, K. Holmen & F. Stordal, 1996. Measurements of NOx and aerosol particles at the Ny-Ålesund Zeppelin mountain station on Svalbard; influence of regional and local pollution sources. Atmospheric Environment 30: 1067–1079.CrossRefGoogle Scholar
  9. Bennet, K. D., 1996. Determination of the number of zones in a biostratigraphical sequence. New Phytologist 132: 155–170.CrossRefGoogle Scholar
  10. Bertoni, R., C. Callieri & M. Contesini, 1998. Organic carbon and microorganisms in two Nepalese lakes. Memorie dell’Istituto Italiano di Idrobiologia 57: 99–106.Google Scholar
  11. Bhandari, B., 1993. The current status of wetland in Nepal. In Foundation, I. (ed.), Towards Wise Use of Asian Wetlands. Asian Wetland Symposium, Kyoto, Japan: 103–111.Google Scholar
  12. Bolch, T., M. Buchroithner, T. Pieczonka & A. Kunert, 2008. Planimetric and volumetric glacier changes in the Khumbu Himal, Nepal, since 1962 using Corona, Landsat TM and ASTER data. Journal of Glaciology 54: 592–600.CrossRefGoogle Scholar
  13. Bonasoni, P., P. Laj, F. Angelini, J. Arduini, U. Bonafè, F. Calzolari, P. Cristofanelli, S. Decesari, M. C. Facchini, S. Fuzzi, G. P. Gobbi, M. Maione, A. Marinoni, A. Petzold, F. Roccato, J. C. Roger, K. Sellegri, M. Sprenger, H. Venzac, G. P. Verza, P. Villani & E. Vuillermoz, 2008. The ABC-Pyramid atmospheric research observatory in Himalaya for aerosol, ozone and halocarbon measurements. Science of the Total Environment 391: 252–261.CrossRefPubMedGoogle Scholar
  14. Bortolami, G., 1998. Geology of the Khumbu Region, Mt Everest, Nepal. In Lami, A. & G. Giussani (eds), Limnology of High Altitude Lakes in the Mt Everest Region (Nepal). Memorie dell’Istituto italiano di Idrobiologia: 41–49.Google Scholar
  15. Brown, L. E., D. M. Hannah & A. M. Milner, 2007. Vulnerability of alpine stream biodiversity to shrinking glaciers and snowpacks. Global Change Biology 13: 958–966.CrossRefGoogle Scholar
  16. Buffa, G., C. Ferrari & S. Lovari, 1998. The upper subalpine vegetation of Sagarmatha National Park (Khumbu Himal area, Nepal) and its relationship with Himalayan tahr, musk deeer and domestic yak. An outline. In Baudo, R., G. Tartari & M. Munawar (eds), Top of the World Environmental Research: Mount Everest Himalayas. Backhuys, Leiden, The Netherlands: 167–175.Google Scholar
  17. Camarero, L., M. Rogora, R. Mosello, N. J. Anderson, A. Barbieri, I. Botev, M. Kernan, J. Kopacek, A. Korhola, A. F. Lotter, G. Muri, C. Postolache, E. StuchlÍK, H. Thies & S. W. Wright, 2009. Regionalisation of chemical variability in European mountain lakes. Freshwater Biology 54: 2452–2469.CrossRefGoogle Scholar
  18. Chen, F., J. Holmes, B. Wünnemann & Z. Yu, 2009. Holocene climate variability in arid Asia: nature and mechanisms. Quaternary International 194: 1–5.CrossRefGoogle Scholar
  19. Cui, X. & H. F. Graf, 2009. Recent land cover changes on the Tibetan Plateau: a review. Climatic Change 94: 47–61.CrossRefGoogle Scholar
  20. DHM, 1998. Climatological Records of Nepal 1991–1994. Department of Hydrology and Meteorology, HMG-Nepal, Kathmandu: 232 pp.Google Scholar
  21. DHM, 2007. Climatological Records of Nepal 1999–2004. Department of Hydrology and Meteorology, HMG-Nepal, Kathmandu: 128 pp.Google Scholar
  22. Drever, J. I. & J. Zobrist, 1992. Chemical weathering of silicate rocks as a function of elevation in the southern Swiss Alps. Geochimica et Cosmochimica Acta 56: 3209–3216.CrossRefGoogle Scholar
  23. Grimm, E. C., 1987. CONISS: a fortran 77 program for stratigraphically constrained 460 cluster analysis by the method of incremental sum of squares. Computers and Geosciences 13: 3–35.CrossRefGoogle Scholar
  24. Grimm, E. C., L. J. J. Maher & D. M. Nelson, 2009. The magnitude of error in conventional bulk-sediment radiocarbon dates from central North America. Quaternary Research 72: 301–308.CrossRefGoogle Scholar
  25. Guilizzoni, P. & A. Lami, 2001. Paleolimnology: use of algal pigments as indicators. In Bitton, G. (ed.), Encyclopaedia of Environmental Microbiology. Wiley J. and Sons, Chichester, UK: 2306–2317.Google Scholar
  26. Guilizzoni, P., G. Bonomi, G. Galanti & D. Ruggiu, 1983. Relationship between sedimentary pigments and primary production: evidence from core analyses of twelve Italian lakes. Hydrobiologia 103: 103–106.CrossRefGoogle Scholar
  27. Guilizzoni, P., A. Lami, J. D. Smith, C. A. Belis, M. Bianchi, R. Bettinetti, A. Marchetto & H. Muntau, 1998. Palaeolimnological analysis of four Himalayan lakes (Khumbu Valley, Nepal). In: Tartari, G., R. Baudo & M. Munawar (eds), Top of the Word, Mount Everest-Himalaya Ecosystem. Backhuys Publishers, Leiden, The Netherlands: 189–217.Google Scholar
  28. Guilizzoni, P., A. Marchetto, A. Lami, A. Brauer, L. Vigliotti, S. Musazzi, L. Langone, M. Manca, F. Lucchini, N. Calanchi, E. Dinelli & A. Mordenti, 2006. Records of environmental and climatic changes during the late Holocene from Svalbard: palaeolimnology of Kongressvatnet. Journal of Paleolimnology 36: 325–351.CrossRefGoogle Scholar
  29. Heiri, O., A. F. Lotter & G. Lemcke, 2001. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology 25: 101–110.CrossRefGoogle Scholar
  30. Henderson, A. C. G. & J. A. Holmes, 2009. Palaeolimnological evidence for environmental change over the past millennium from Lake Qinghai sediments: a review and future research prospective. Quaternary International 194: 134–147.CrossRefGoogle Scholar
  31. Hirano, M., 1963. Freshwater algae from the Nepal Himalaya, collected by a member of the Japanese climbing expedition. Contributions from the biological laboratory Kyoto University: 16 pp.Google Scholar
  32. Hirsch, R. M., J. R. Slack & R. A. Smith, 1982. Techniques of trend analysis for monthly water quality data. Water Resources Research 18: 107–121.CrossRefGoogle Scholar
  33. Hirsch, R. M., R. B. Alexander & R. A. Smith, 1991. Selection of methods for the detection and estimation of trends in water quality. Water Resources Research 29: 803–813.CrossRefGoogle Scholar
  34. Holmes, J. A., E. R. Cook & B. Yang, 2009. Climate change over the past 2000 years in Western China. Quaternary International 194: 91–107.CrossRefGoogle Scholar
  35. Hutchinson, G. E., 1937. Limnological studies in Indian Tibet. Internationale Revue der gesamten Hydrobiologie und Hydrographie 35: 134–177.CrossRefGoogle Scholar
  36. IPCC, 2007. Climate Change 2007: Impacts, Adaptation and Vulnerability. WG2-Ecosystems Their Properties, Goods and Services. Cambridge University Press, Cambridge: 212–272.Google Scholar
  37. Jones, J. R., M. F. Knowlton & D. B. Swar, 1989. Limnological reconnaissance of waterbodies in central and southern Nepal. Hydrobiologia 184: 171–189.Google Scholar
  38. Juggins, S., 2009. Rioja. an R package for the analysis of quaternary science data, New Castle, UK.Google Scholar
  39. Kamenik, C., K. A. Konig, R. Schmidt, P. G. Appleby, J. A. Dearing, A. Lami, R. Thompson & R. Psenner, 2000. Eight hundred years of environmental changes in a high Alpine lake (Gossenköllesee, Tyrol) inferred from sediment record. Journal of Limnology 59 Suppl.: 43–52.Google Scholar
  40. Karlsson, J., A. Jonsson & M. Jansson, 2005. Productivity of high-latitude lakes: climate effect inferred from altitude gradient. Global Change Biology 11: 710–715.CrossRefGoogle Scholar
  41. Kehrwald, N. M., L. G. Thompson, T. Yao, E. Mosley-Thompson, U. Schotterer, V. Alfimov, J. Beer, J. Eikenberg & M. E. Davis, 2008. Mass loss on Himalayan glacier endangers water resources. Geophysical Research Letters 35: L22503.CrossRefGoogle Scholar
  42. Kendall, M. G., 1975. Rank Correlation Measures. Charles Griffin, London: 202 pp.Google Scholar
  43. Khan, M. A. & D. P. Zutshi, 1980. Contribution to high altitude limnology of the himalayan system. I. Limnology and primary productivity of the plankton community of Nilang Lake, Kashmir. Hydrobiologia 75: 102–112.CrossRefGoogle Scholar
  44. Koinig, K. A., R. Psenner & R. Schmidt, 1999. Effects of air temperature changes and acid deposition on the pH history of three high alpine lakes. Proceedings of the 14th International Diatom Symposium. September 2–8,1996, Tokyo, Japan: 467–478.Google Scholar
  45. Kraus, H., 1966. Das klima von Nepal Khumbu Himal, Munchen: 301–321.Google Scholar
  46. Krishna, A. P., 2005. Snow and glacier cover assessment in the high mountains of Sikkim Himalaya. Hydrological Process 19: 2375–2383.CrossRefGoogle Scholar
  47. Lami, A. & G. Giussani, 1998. Limnology of high altitude lakes in the Mt Everest Region (Himalayas, Nepal): 244 pp.Google Scholar
  48. Lami, A., F. Niessen, P. Guilizzoni, J. Masaferro & C. A. Belis, 1994. Palaeolimnological studies of the eutrophication of volcanic Lake Albano (central Italy). Journal of Paleolimnology 10: 181–197.CrossRefGoogle Scholar
  49. Lami, A., P. Guilizzoni, A. Marchetto, R. Bettinetti & D. J. Smith, 1998. Palaeolimnological evidence of environmental changes in some high altitude Himalayan lakes (Nepal). Memorie dell’Istituto Italiano di Idrobiolgia 57: 107–130.Google Scholar
  50. Laurion, I., A. Lami & R. Sommaruga, 2002. Distribution of mycosporine-like amino acids and photoprotective carotenoids among freshwater phytoplankton assemblages. Aquatic Microbial Ecology 26: 283–294.CrossRefGoogle Scholar
  51. Leavitt, P. R. & D. A. Hodgson, 2001. Sedimentary pigments. In Smol, J. P., H. J. B. Birks & W. M. Last (eds), Tracking Environmental Change Using Lake Sediments. Vol. 3. Terrestrial, Algal and Siliceous Indicators. Kluwer Academic Publishers, Dordrecht, The Netherlands: 295–325.Google Scholar
  52. Leavitt, P. R., P. R. Sanford, S. R. Carpenter & J. F. Kitchell, 1994. An annual fossil record of production, planktivory and piscivory during whole-lake manipulations. Journal of Paleolimnology 11: 133–149.CrossRefGoogle Scholar
  53. Leavitt, P. R., D. L. Findlay, R. I. Hall & J. P. Smol, 1999. Algal responses to dissolved organic carbon loss and pH decline during whole-lake acidification: evidence from paleolimnology. Limnology and Oceanography 44: 757–773.CrossRefGoogle Scholar
  54. Livingstone, D. M., 2003. Impact of secular climate change on the thermal structure of a large temperate central European lake. Climatic Change 57: 205–225.CrossRefGoogle Scholar
  55. Löffler, H., 1969. High altitude lakes in Mt Everest region. Verhandlungen des Internationalen Verein Limnologie 17: 373–385.Google Scholar
  56. Manca, M., D. Ruggiu, P. Panzani, A. Asioli, G. Mura & A. M. Nocentini, 1998. Report on a collection of aquatic organisms from high mountain lakes in the Khumbu Valley (Nepalese Himalayas). In Lami, A. & G. Giussani (eds), Limnology of High Altitude Lakes in the Mt Everest Region (Nepal). Memorie dell’Istituto Italiano di Idrobiologia 57: 77–98.Google Scholar
  57. Mani, A., 1981. The climate of the Himalaya. In Lall, J. S. & A. D. Moddie (eds), The Himalaya: Aspects of Change. Oxford University Press, Delhi: 1–15.Google Scholar
  58. Messerli, B., 1997. The global mountain problematique (Abstracts). European Conference on Environmental and Societal Change: 2–3.Google Scholar
  59. Mosello, R., G. A. Tartari, A. Marchetto, S. Polesello, M. Bianchi & H. Muntau, 2004. Ion chromatography performances evaluated from the third AQUACON freshwater analysis interlaboratory exercise. Accreditation and Quality Assurance: Journal for Quality, Comparability and Reliability in Chemical Measurement 9: 242–246.Google Scholar
  60. Müller, F., 1980. Present and late pleistocene equilibrium line altitudes in the Mt Everest region – an application of the glacier inventory. IAHS-AISH Publication No. 126: 75–94.Google Scholar
  61. Oldfield, F., 1983. The role of magnetic studies in palaeohydrology. In Gregory, K. J. (ed.), Background to Palaeohydrology. A Perspective. Backhuys Publishers, Leiden, The Netherlands: 141–166.Google Scholar
  62. Oldfield, F., C. Barnosky, E. B. Leopold & J. P. Smith, 1983. Mineral magnetic studies of lake sediments. Hydrobiologia 103: 37–44.CrossRefGoogle Scholar
  63. Owen, L. A., M. W. Caffee, R. C. Finkel & Y. B. Seong, 2008. Quaternary glaciation of the Himalayan–Tibetan orogen. Journal of Quaternary Science 23: 513–531.CrossRefGoogle Scholar
  64. Pedrozo, F., S. Chillrud, P. Temporetti & M. Diaz, 1993. Chemical composition and nutrient limitation in rivers and lakes of Northern Patagonian Andes (39.5°–42°S; 71°W) (Rep. Argentina). Verhandlungen des Internationalen Verein Limnologie 25: 207–214.Google Scholar
  65. Phadtare, N. R., 2000. Sharp decrease in summer monsoon strength 4000–3500 cal yr B.P. in the Central Higher Himalaya of India based on pollen evidence from Alpine Peat. Quaternary Science Reviews 53: 122–129.Google Scholar
  66. Psenner, R., 1999. Living in a dusty world: airborne dust as a key factor for alpine lakes. Water Air Soil Pollution 112: 217–227.CrossRefGoogle Scholar
  67. Psenner, R. & R. Schmidt, 1992. Climate-driven pH control of remote alpine lakes and effects of acid deposition. Nature 356: 781–783.CrossRefGoogle Scholar
  68. Renberg, I., Y. W. Brodin, G. Cronberg, F. El Daoushy, F. Oldfield, B. Rippey, S. Sandoey, J. E. Wallin & M. Wik, 1990. Recent acidification and biological changes in Lilla Oeresjoen, southwest Sweden, and the relation to atmospheric pollution and land-use history. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 327: 391–396.CrossRefGoogle Scholar
  69. Rogora, M., R. Mosello & S. Arisci, 2003. The effect of climate warming on the hydrochemistry of alpine lakes. Water Air Soil Pollution 148: 347–361.CrossRefGoogle Scholar
  70. Rogora, M., J. Massaferro, A. Marchetto, G. Tartari & R. Mosello, 2008. The water chemistry of some shallow lakes in Northern Patagonia and their nitrogen status in comparison with remote lakes in different regions of the globe. Journal of Limnology 67: 75–76.Google Scholar
  71. Röthlisberger, R. & M. A. Geyh, 1985. Glacier variations in Himalayas and Karakorum. Z. Gletscherkunde Glazialgeol 21: 237–249.Google Scholar
  72. Rühland, K., A. Pienitz & J. P. Smol, 2003. Paleolimnological evidence from diatoms for recent environmental changes in 50 lakes across Canadian Arctic Treeline. Arctic, Antarctic, and Alpine Research 35: 110–123.CrossRefGoogle Scholar
  73. Salerno, F., E. Buraschi, G. Bruccoleri, G. Tartari & C. Smiraglia, 2008. Glacier surface-area changes in Sagarmatha national park, Nepal, in the second half of the 20th century, by comparison of historical maps. Journal of Glaciology 54: 738–752.CrossRefGoogle Scholar
  74. Sars, G., 1903. On the crustacean fauna of central Asia. Pt. II Cladocera. Annuaire du Musee Zoologique de l’Academie d. Sciences de St. Petersbourg 8: 157–194.Google Scholar
  75. Schindler, D. W., 2009. Lakes as sentinels and integrators for the effects of climate change on watersheds, airsheds, and landscapes. Limnology and Oceanography 54: 2349–2358.Google Scholar
  76. Sharma, S., 2001. The ganges crisis – government lacks strategic plan. Proceedings of the International Conference on Freshwater, Bonn, Germany, 3–7.Google Scholar
  77. Sharma, P. C. & M. C. Pant, 1985. Species composition of zooplankton in two Kaumann Himalayan lakes (U.P. India). Archiv für Hydrobiologie 102: 387–403.Google Scholar
  78. Shresta, A. B., C. P. Wake, P. A. Mayewski & J. E. Dibb, 1999. Maximum temperature trends in the Himalaya and its vicinity: an analysis based on temperature records from Nepal in the period 1971–94. Journal of Climate 12: 2775–2787.CrossRefGoogle Scholar
  79. Smiraglia, C., C. Mayer, C. Mihalcea, G. Diolaiuti, M. Belò & G. Vassena, 2007. Ongoing variations of Himalayan and Karakoram glaciers as witnesses of global changes: recent studies of selected glaciers. In Baudo, R., G. Tartari & E. Vuillermoz (eds), Mountain Witnesses of Global Changes. Research in the Himalaya and Karakoram: SHARE-ASIA Project. Developments in Earth Surface Processes, No. 10: 235–248.Google Scholar
  80. Smol, J. P., I. R. Walker & P. R. Leavitt, 1991. Paleolimnology and hindcasting climatic trends. Internationale Vereinigung für Theoretische und Angewandte Limnologie 24: 1240–1246.Google Scholar
  81. Solomina, O., W. Haeberli, C. Kull & G. Wiles, 2008. Historical and Holocene glacier-climate variations: general concepts and overview. Global and Planetary Change 60: 1–9.CrossRefGoogle Scholar
  82. Sommaruga, R. & R. Psenner, 2001. High-Mountain lakes and streams: indicators of a changing world. Arctic, Antarctic, and Alpine Research 33: 383–384.Google Scholar
  83. Sommaruga, R., S. Woegrath, K. A. Koinig, R. Schmidt, R. Sommaruga, R. Tessadri & R. Psenner, 1997. Temperature effects on the acidity of remote alpine lakes. Nature 387: 64–67.CrossRefGoogle Scholar
  84. Stenseth, N. C., A. Mysterud, G. Ottersen, J. W. Hurrell, K. S. Chan & M. Lima, 2002. Ecological effects of climate fluctuations. Science 297: 1292–1296.CrossRefPubMedGoogle Scholar
  85. Stuiver, M., P. J. Reimer & R. W. Reimer, 2000. CALIB 4.4. www.calib.org. Quaternary Research Center, University of Washington, Seattle.
  86. Swar, D. B., 1980. Present status of limnological studies and research in Nepal. In Mori, S. & I. Ikusima (eds), Proceedings of First Workshop on “Promotion of Limnology in Developing Countries”. XXI SIL Congress, Kyoto, Japan: 43–47.Google Scholar
  87. Tartari, G., G. P. Verza & L. Bertolani, 1998a. Meteorological data at the Pyramid Observatory Laboratory (Khumbu Valley, Sagarmatha National Park, Nepal). In Lami, A. & G. Giussani (eds). Limnology of High Altitude Lakes in the Mt Everest Regions (Himalaya, Nepal). Memorie dell’Istituto Italiano di Idrobiologia 57: 23–40.Google Scholar
  88. Tartari, G. A., G. Tartari & R. Mosello, 1998b. Water chemistry of high altitude lakes in the Khumbu and Imja Kola valleys (Nepalese Himalayas). Memorie dell’Istituto Italiano di Idrobiologia 57: 51–76.Google Scholar
  89. Tartari, G., F. Salerno, E. Buraschi, G. Bruccoleri & C. Smiraglia, 2008. Lake surface area variations in the North-Eastern sector of Sagarmatha National Park (Nepal) at the end of the 20th Century by comparison of historical maps. Journal of Limnolology 67: 139–154.Google Scholar
  90. Troll, C., 1959. Die tropischen Gebie. Bonner geogr. Abh. 25: 93 pp.Google Scholar
  91. Ueno, M., 1966. Cladocera and copepoda from Nepal. Japanese Journal of Zoology 15: 95–100.Google Scholar
  92. Vass, K. K., A. Wanganeo, H. S. Raina, D. P. Zutshi & R. Wanganeo, 1989. Summer limnology and fisheries of high mountain lakes of Kashmir Himalayas. Archiv für Hydrobiologie 114: 603–620.Google Scholar
  93. Venables, W. N. & B. D. Ripley, 2002. Modern Applied Statistics with S, 4th ed. Springer, New York: 495 pp.Google Scholar
  94. Vitousek, P. M., J. D. Aber, R. W. Howarth, G. E. Likens, P. A. Matson, D. W. Schindler, W. H. Schlesinger & D. G. Tilman, 1997. Human alteration of the global nitrogen cycle: sources and consequences. Ecological Applications 7: 737–750.Google Scholar
  95. Vuillermoz, E., E. Cabini, G. P. Verza & G. Tartari, 2008. Pyramid Meteorological Network (PMN). Khumbu Valley, Nepal. Summary Report 1994–2006. SHARE Project. Ev-K2-CNR, Bergamo, Italia: p. 287.Google Scholar
  96. Wögrath, S. & R. Psenner, 1995. Seasonal, annual and longterm variability in the water chemistry of a remote high mountain lake: acid rain versus natural changes. Water, Air, and Soil pollution 85: 359–364.CrossRefGoogle Scholar
  97. Wrona, F. J., T. D. Prowse, J. D. Reist, J. E. Hobbie, L. M. J. Levesque & W. F. Vincent, 2006. Climate change effects on aquatic biota, ecosystem structure and function. Ambio 35: 359–369.CrossRefPubMedGoogle Scholar
  98. Yadav, R. R. & J. Singh, 2002. Tree-ring-based spring temperature patterns over the past four centuries in Western Himalaya. Quaternary Research 57: 299–305.CrossRefGoogle Scholar
  99. Yang, B., A. Bräuning, J. Liu, M. E. Davis & S. Yajun, 2009. Temperature changes on the Tibetan Plateau during the past 600 years inferred from ice cores and tree rings. Global and Planetary Change 69: 71–78.CrossRefGoogle Scholar
  100. Zimmermann, M., M. Bichsel & H. Kienholz, 1986. Mountain hazards mapping in the Khumbu Himal, Nepal. Mountain Research and Development 6: 29–40.CrossRefGoogle Scholar
  101. Züllig, H., 1982. Untersuchungen über die Stratigraphie von Carotinoiden im geschichteten Sediment von 10 Schweizer Seen zur Erkundung früherer Phytoplankton-Entfaltungen. Schweizerische Zeitschrift für Hydrologie 44: 1–98.CrossRefGoogle Scholar
  102. Zutshi, D. P., 1991. Limnology of high altitude lakes of Himalayan region. Verhandlungen des Internationalen Verein Limnologie 24: 1077–1080.Google Scholar
  103. Zutshi, D. P. & K. K. Vass, 1970. High altitude lakes of Kashmir. Ichthiologica 10: 12–15.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Andrea Lami
    • 1
  • Aldo Marchetto
    • 1
  • Simona Musazzi
    • 1
  • Franco Salerno
    • 2
  • Gianni Tartari
    • 2
  • Piero Guilizzoni
    • 1
  • Michela Rogora
    • 1
  • Gabriele A. Tartari
    • 1
  1. 1.CNR – Institute of Ecosystem Study (ISE)VerbaniaItaly
  2. 2.CNR – Water Research Institute (IRSA)BrugherioItaly

Personalised recommendations