, Volume 649, Issue 1, pp 107–114 | Cite as

Potential pathways of invasion and dispersal of Mnemiopsis leidyi A. Agassiz 1865 in the Baltic Sea

Primary research paper


The rapid spread of Mnemiopsis leidyi across the entire Baltic Sea after its first observation in 2006 gave rise to the question of its invasion pathway and the possible vector of its transport. To investigate pathways of M. leidyi invasion, the years 2005–2008 have been simulated by a three-dimensional coupled sea ice-ocean model of the Baltic Sea. In addition, a Lagrangian particle-tracking model has been utilized to test possible transport routes of this invader for 2006/2007. Based on the model, we exclude advection from the Kattegat as the main area of origin of M. leidyi and further spreading through the entire Baltic Sea. To explain the dispersion of M. leidyi in 2007 an earlier invasion already in 2005 is most probable. Alternatively, an invasion originating from main harbors with high ship traffic could also be a potential pathway. Drift simulations with drifter release in the main harbors are in good agreement with the observed distribution pattern of M. leidyi.


Invasive species Range expansion Mnemiopsis leidyi Lagrangian particle-tracking model Baltic Sea 



Authors are grateful to J. C. Molinero for his valuable comments on the article. This work was financed by IFM-GEOMAR.


  1. Carlton, J. T., 1999. The scale and ecological consequences of biological invasions in the world’s oceans. In Sandlund, O. T. S. P. & A. Viken (eds) Invasive Species and Biodiversity Management. Kluwer, Dordrecht: 195–212.Google Scholar
  2. Catford, J. A., R. Jansson & C. Nilsson, 2009. Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Diversity & Distributions 15: 22–40.CrossRefGoogle Scholar
  3. Dulvy, N. K., S. I. Rogers, S. Jennings, V. Stelzenmuller, S. R. Dye & H. R. Skjoldal, 2008. Climate change and deepening of the North Sea fish assemblage: a biotic indicator of warming seas. Journal of Applied Ecology 45: 1029–1039.CrossRefGoogle Scholar
  4. Elton, C. S., 1958. The Ecology of Invasions by Animals and Plants. Methuen, London, UK.Google Scholar
  5. Faasse, M. A. & K. M. Bayha, 2006. The ctenophore Mnemiopsis leidyi A. Agassiz 1865 in coastal waters of the Netherlands: an unrecognized invasion? Aquatic Invasions 1: 270–277.CrossRefGoogle Scholar
  6. Gollasch, S. & E. Leppaekoski, 2007. Risk assessment and management scenarios for ballast water mediated species introductions into the Baltic Sea. Aquatic Invasions 2: 313–340.CrossRefGoogle Scholar
  7. Gorokhova, E., M. Lehtiniemi, S. Viitasalo-Frösen & H. D. Haddock, 2009. Molecular evidence for the occurrence of ctenophore Mertensia ovum in the northern Baltic Sea and implications for the status of the Mnemiopsis leidyi invasion. Limnology and Oceanography 54: 2025–2033.Google Scholar
  8. Haslob, H., C. Clemmesen, M. Schaber, H. H. Hinrichsen, J. O. Schmidt, R. Voss, G. Kraus & F. W. Köster, 2007. Invading Mnemiopsis leidyi as a potential threat to Baltic fish. Marine Ecology Progress Series 349: 303–306.CrossRefGoogle Scholar
  9. Hinrichsen, H. H., A. Lehmann, M. A. St. John & B. Brügge, 1997. Modelling the cod larvae drift in the Bornholm Basin in summer 1994. Continental Shelf Research 17(14): 1765–1784.CrossRefGoogle Scholar
  10. Hinrichsen, H. H., U. Böttcher, F. W. Köster, A. Lehmann & M. A. St. John, 2003a. Modelling the influences of atmospheric forcing conditions on Baltic cod early life stages: distribution and drift. Journal of Sea Research 49: 187–201.CrossRefGoogle Scholar
  11. Hinrichsen, H. H., A. Lehmann, C. Möllmann & J. O. Schmidt, 2003b. Dependency of larval fish survival on retention/dispersion in food limited environments: the Baltic Sea as a case study. Fisheries Oceanography 12(4/5): 425–433.CrossRefGoogle Scholar
  12. Hinrichsen, H. H., A. Lehmann, C. Petereit & J. Schmidt, 2007. Correlation analysis of Baltic Sea winter water mass formation and its impact on secondary and tertiary production. Oceanologia 49(3): 381–395.Google Scholar
  13. Jackson, J. B. C., M. X. Kirby, W. H. Berger, K. A. Bjorndal, L. W. Botsford, B. J. Bourque, R. H. Bradbury, R. Cooke, J. Erlandson, J. A. Estes, T. P. Hughes, S. Kidwell, C. B. Lange, H. S. Lenihan, J. M. Pandolfi, C. H. Peterson, R. S. Steneck, M. J. Tegner & R. Warner, 2001. Historical overfishing and the recent collapse of coastal ecosystems. Science 293: 629–637.CrossRefPubMedGoogle Scholar
  14. Janas, U. & A. Zgrundo, 2007. First record of Mnemiopsis leidyi A. Agassiz 1865 in the Gulf of Gdańsk (southern Baltic Sea). Aquatic Invasions 2: 450–454.CrossRefGoogle Scholar
  15. Javidpour, J., U. Sommer & T. A. Shiganova, 2006. First record of Mnemiopsis leidyi A. Agassiz 1865 in the Baltic Sea. Aquatic Invasions 1: 299–302.CrossRefGoogle Scholar
  16. Javidpour, J., J. C. Molinero, J. Peschutter & U. Sommer, 2009. Seasonal changes and population dynamics of the ctenophore Mnemiopsis leidyi after its first year of invasion in the Kiel Fjord, Western Baltic Sea. Biological Invasions 11: 873–882.CrossRefGoogle Scholar
  17. Kinlan, B. P. & A. Hasting, 2005. Rates of population spread and geographic range expansion. In Sax, D. F., J. J. Stachowicz & S. D. Gaines (eds) Species Invasions, Insights into Ecology, Evolution, and Biogeography. Sinauer Associates, Sunderland, MA: 480 pp.Google Scholar
  18. Kot, M., M. A. Lewis & P. vanden Driessche, 1996. Dispersal data and the spread of invading organisms. Ecology 77: 2027–2042.CrossRefGoogle Scholar
  19. Kube, S., L. Postel, C. Honnef & C. B. Augustin, 2007. Mnemiopsis leidyi in the Baltic Sea – distribution and overwintering between autumn 2006 and spring 2007. Aquatic Invasions 2: 137–145.CrossRefGoogle Scholar
  20. Lehmann, A., 1995. A three-dimensional baroclinic eddy-resolving model of the Baltic Sea. Tellus 47: 1013–1031.CrossRefGoogle Scholar
  21. Lehmann, A. & H. H. Hinrichsen, 2000. On the wind driven and thermohaline circulation of the Baltic Sea. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere 25: 183–189.CrossRefGoogle Scholar
  22. Lehmann, A., W. Krauss & H.-H. Hinrichsen, 2002. Effects of remote and local atmospheric forcing on circulation and upwelling in the Baltic Sea. Tellus 54A: 299–316.Google Scholar
  23. Lehtiniemi, M., J. P. Pääkkönen, J. Flinkman, T. Katajisto, E. Gorokhova, M. Karjalainen, S. Viitasalo & H. Björk, 2007. Distribution and abundance of the American comb jelly (Mnemiopsis leidyi) – a rapid invasion to the northern Baltic Sea during 2007. Aquatic Invasions 2: 445–449.CrossRefGoogle Scholar
  24. Lockwood, J. L., M. F. Hoopes & M. P. Marchetti, 2007. Invasion Ecology. Blackwell publishing, Oxford, UK: 304 pp.Google Scholar
  25. Mack, R. N., D. Simberloff, W. M. Lonsdale, H. Evans, M. Clout & F. A. Bazzaz, 2000. Biotic invasions: causes, epidemiology, global consequences, and control. Ecological Applications 10: 689–710.CrossRefGoogle Scholar
  26. MacKenzie, B. R. & D. Schiedek, 2007. Daily ocean monitoring since the 1860s shows record warming of northern European seas. Global Change Biology 13(7): 1335–1347.CrossRefGoogle Scholar
  27. Novotny, K., K. G. Liebsch, R. Dietrich & A. Lehmann, 2005. Combination of sea-level observations and an oceanographic model for geodetic applications in the Baltic Sea. In Sanso, F. (ed.), A Window on the Future of Geodesy, Vol. 128 of Springer Series of IAG Symposia. Springer, New York: 195–200.Google Scholar
  28. Occhipinti-Ambrogi, A. & D. Savini, 2003. Biological invasions as a component of global change in stressed marine ecosystems. Marine Pollution Bulletin 46: 542–551.CrossRefPubMedGoogle Scholar
  29. Parmesan, C. & G. Yohe, 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421: 37–42.CrossRefPubMedGoogle Scholar
  30. Purcell, J. E., T. A. Shiganova, M. B. Decker & E. D. Houde, 2001. The ctenophore Mnemiopsis leidyi in native and exotic habitats: U. S. estuaries versus the Black Sea basin. Hydrobiologia 451: 145–176.CrossRefGoogle Scholar
  31. Reusser, D. A. & H. Lee, 2008. Predictions for an invaded world: a strategy to predict the distribution of native and non-indigenous species at multiple scales. ICES Journal of Marine Science 65: 742–745.CrossRefGoogle Scholar
  32. Roohi, A., Z. Yasin, A. E. Kideys, A. T. S. Hwai, A. G. Khanari & E. Eker-Develi, 2008. Impact of a new invasive ctenophore (Mnemiopsis leidyi) on the zooplankton community of the Southern Caspian Sea. Marine Ecology 29: 421–434.CrossRefGoogle Scholar
  33. Schneider, G., 1987. Role of advection in the distribution and abundance of Pleurobrachia pileus in Kiel Bight. Marine Ecology Progress Series 41: 99–102.CrossRefGoogle Scholar
  34. Shiganova, T. A. & Y. V. Bulgakova, 2000. Effects of gelatinous plankton on Black Sea and Sea of Azov fish and their food resources. ICES Journal of Marine Science 57: 641–648.CrossRefGoogle Scholar
  35. Tendal, O. S., K. R. Jensen & H. U. Riisgård, 2007. Invasive ctenophore Mnemiopsis leidyi widely distributed in Danish waters. Aquatic Invasions 2: 46–455.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Leibniz Institute of Marine SciencesKielGermany

Personalised recommendations