, Volume 646, Issue 1, pp 5–20 | Cite as

A multiproxy approach to inferring Holocene paleobotanical changes linked to sea-level variation, paleosalinity levels, and shallow lake alternative states in Negra Lagoon, SE Uruguay

  • Felipe García-Rodríguez
  • Silvina Stutz
  • Hugo Inda
  • Laura del Puerto
  • Roberto Bracco
  • Daniel Panario


A multiproxy analysis of diatoms, chrysophyte cysts, opal phytoliths, and palynomorphs was undertaken in Negra Lagoon, to decipher Holocene changes in paleobotanical proxies associated with sea-level changes and paleolimnological conditions. Before the Holocene transgression (7000 yr BP), a terrestrial system was inferred as no aquatic palynomorphs or biogenic silica remains were recorded. During the sea-level maximum (5200 yr BP), marine/brackish conditions were established as indicated by diatoms, Chenopodiaceae, and a high content of cysts of Peridinioideae. The catchment consisted of grasslands and wetlands as indicated by the opal phytolith data. The Holocene transgression was followed by a sea-level decrease, which led to the onset of brackish/freshwater conditions as inferred from the co-dominance of freshwater and marine/brackish diatoms. This is also supported not only by the concomitant increase in non-siliceous freshwater microalgae and emergent macrophytes, but also by the presence of Myriophyllum. As sea level continued to decrease during late Holocene, a freshwater system was observed because of the complete separation from the ocean. Chrysophyte cysts were consistently recorded and brackish diatoms exhibited reduced abundances. The observed limnological changes are consistent with the alternative states hypothesis of Scheffer’s model (1998). That is, the clear water phases were explained because of high macrophyte abundances, low phytoplankton frequencies, high cyst to diatom ratios, and increase in frequencies of benthic diatom species. Conversely, turbid phases were likely to occur when low cyst to diatom ratios together with increase in planktonic diatoms and decrease in macrophytes values were detected. This highlights the importance of this approach to detect long-term changes in shallow lake alternative states.


Alternative states Diatoms Chrysophyte cysts Opal phytoliths Pollen Paleolimnology 



PEDECIBA, SNI-ANII, and CSIC-Program “Contratación de investigadores provenientes del exterior” are acknowledged for financial support. John Smol, Aldo Prieto, and an anonymous reviewer provided comments that improved this paper. This paper is dedicated to the charming birth of Emilia García-Sosa.


  1. Alonso, E., 1997. Plantas Acuáticas de los Humedales del Este. PROBIDES, Rocha-Uruguay: 238 pp.Google Scholar
  2. Angulo, R. J. & G. C. Lessa, 1997. The Brazilian sea-level curves: a critical review with emphasis on the curves from Paranaguá and Cananéia regions. Marine Geology 140: 161–166.CrossRefGoogle Scholar
  3. Angulo, R. J., P. C. F. Giannini, K. Suguio & L. C. R. Pessenda, 1999. Relative sea-level changes in the last 5500 years in southern Brazil (Laguna-Imbituba region, Santa Catarina State) based on vermetid 14C ages. Marine Geology 159: 323–339.CrossRefGoogle Scholar
  4. Angulo, R. J., M. C. de Souza, P. J. Reimer & S. K. Sasaoka, 2005. Reservoir effect of the southern and southeastern Brazilian coast. Radiocarbon 47: 67–73.Google Scholar
  5. Barboni, D., R. Bonnefille, A. Alexandre & J. D. Meunier, 1999. Phytoliths as paleoenvironmental indicators, West Side Middle Awash Valley, Ethiopia. Palaeogeography, Palaeoclimatology, Palaeoecology 152: 87–100.CrossRefGoogle Scholar
  6. Blasi, A., C. Castiñeira, L. del Puerto, H. Inda, R. Bracco & F. García-Rodríguez, 2005. Sedimentación Holocena en los Bañados de Santa Teresa y el Registro Arqueológico, Planicie Costera de Departamento de Rocha, Uruguay. In Cabaleri N., C. A. Cingolani, E. Linares, M. G. López de Luchi, H. A. Ostera & H. O. Panarello (eds), Actas del XV Congreso Geológico Argentino CD-ROM, Artículo 486: 8 pp.Google Scholar
  7. Borel, C. M., G. R. Guerstein & A. R. Prieto, 2003. Palinomorfos acuáticos (algas y acritarcos) del Holoceno de la Laguna Hinojales (Buenos Aires, Argentina): interpretación paleoecológica. Ameghiniana 40(4): 531–544.Google Scholar
  8. Bozarth, S., 1992. Classification of opal phytoliths formed in selected dicotyledons native to the Great Plains. In Rapp, G. & H. Mulholland (eds), Phytolith Systematics. Plenum Press, New York: 193–214.Google Scholar
  9. Bracco, R., D. Panario & C. Ures, 1999. Dataciones de 14C y efecto de reservorio para el litoral del Uruguay. Primeras Jornadas del Cenozoico del Uruguay, Facultad de Ciencias, Montevideo: 4–5.Google Scholar
  10. Bracco, R., H. Inda, L. del Puerto, C. Castiñeira, P. Sprechmann & F. García-Rodríguez, 2005a. Relationships between Holocene sea-level variation, trophic development and climate change in Negra Lagoon, southern Uruguay. Journal of Paleolimnology 33: 253–263.CrossRefGoogle Scholar
  11. Bracco, R., L. del Puerto, H. Inda & C. Castiñeira, 2005b. Mid-late Holocene cultural and environmental dynamics in eastern Uruguay. Quaternary International 132: 37–45.CrossRefGoogle Scholar
  12. Brenner, M., T. J. Whitmore, M. A. Lasi, J. E. Cable & P. H. Cable, 1999. A multi-proxy trophic state reconstruction for shallow Orange Lake, Florida, USA: possible influence of macrophytes on limnetic nutrient concentrations. Journal of Paleolimnology 21: 215–233.CrossRefGoogle Scholar
  13. Carrión, J. S. & C. Navarro, 2002. Cryptogam spores and other non-pollen microfossils as sources of paleoecological information: case-studies from Spain. Annales Botanici Fennici 39: 1–14.Google Scholar
  14. Cavallotto, J. L., R. A. Violante & G. Parker, 2004. Sea-level fluctuations during the last 8600 years in the de la Plata River (Argentina). Quaternary International 114: 155–165.CrossRefGoogle Scholar
  15. Chase, J. M. & T. M. Knight, 2006. Effects of eutrophication and snails on Eurasian watermilfoil (Myriophyllum spicatum) invasion. Biological Invasions 8: 1643–1649.CrossRefGoogle Scholar
  16. Conde, D. & R. Sommaruga, 1999. A review of the state of limnology in Uruguay. In Wetzel, R. G. & B. Gopal (eds), Limnology in Developing Countries, Vol. 2. International Association for Limnology (SIL), New Delhi: 1–31.Google Scholar
  17. del Puerto L., 2009. Silicofitolitos como Indicadores Paleoambientales: bases comparativas y reconstrucción paleoclimática a partir del Pleistoceno Tardío en el SE del Uruguay. M.Sc. Thesis PEDECIBA, Facultad de Ciencias, Universidad de la República, Montevideo: 189 pp (unpublished).Google Scholar
  18. del Puerto, L., F. García-Rodríguez, H. Inda, R. Bracco, C. Castiñeira & J. B. Adams, 2006. Paleolimnological evidence of Holocene climatic changes in Lake Blanca, southern Uruguay. Journal of Paleolimnology 36: 151–163.CrossRefGoogle Scholar
  19. del Puerto, L., H. Inda & F. García-Rodríguez, 2008. Reconstrucción Paleoambiental para el Holoceno medio y tardío en la cuenca de la Laguna Negra: el aporte de los indicadores biosilíceos. In Korstanje, A. & P. Babot (eds), Matices Interdisciplinarios en Estudios Fitolíticos y de Otros Microfósiles. BAR International Series 1870: 119–129.Google Scholar
  20. Faegri, K. & J. Iversen, 1992. Textbook of Pollen Analysis, IV edn. John Willey and Sons, Chichester: 328 pp.Google Scholar
  21. Flower, R. J., 1993. Diatom preservation: experiments and observations on dissolution and breakage in modern and fossil material. Hydrobiologia 269(270): 473–484.CrossRefGoogle Scholar
  22. Forrest, F., E. D. Reavie & J. P. Smol, 2002. Comparing limnological changes associated with 19th century canal construction and other catchment disturbances in four lakes within Rideay Canal system, Ontario, Canada. Journal of Limnology 61: 183–197.Google Scholar
  23. Fredlund, G. & L. T. Tieszen, 1994. Modern phytolith assemblages from the North American Great Plains. Journal of Biogeography 21: 321–335.CrossRefGoogle Scholar
  24. Frenguelli, J., 1941. Diatomeas del Río de la Plata. Revista del Museo Nacional de la Plata. Tomo III: 213–334.Google Scholar
  25. Frenguelli, J., 1945. Las diatomeas del Platense. Revista del Museo Nacional de la Plata. Tomo III: 77–221.Google Scholar
  26. García-Rodríguez, F., 2006. Inferring paleosalinity trends using the chrysophyte cyst to diatom ratio in coastal shallow temperate/subtropical lagoons influenced by sea level changes. Journal of Paleolimnology 36: 165–173.CrossRefGoogle Scholar
  27. García-Rodríguez, F. & A. Witkowski, 2003. Inferring sea level variation from relative percentages of Pseudopodosira kosugii in Rocha lagoon, SE Uruguay. Diatom Research 18: 49–59.Google Scholar
  28. García-Rodríguez, F., C. Castiñeira, B. Scharf & P. Sprechmann, 2002. The relationship between sea level variation and trophic state in the Rocha lagoon, Uruguay. Neues Jahrbuch für Geologie und Paläontologie und Monatshefte 2002: 27–47.Google Scholar
  29. García-Rodríguez, F., P. Sprechmann, D. Metzeltin, L. Scafati, D. L. Melendi, W. Volkheimer, N. Mazzeo, A. Hiller Jr., W. von Tümpling & F. Scasso, 2004a. Holocene trophic state changes in relation to sea level variation in Lake Blanca, SE Uruguay. Journal of Paleolimnology 31: 99–115.CrossRefGoogle Scholar
  30. García-Rodríguez, F., D. Metzeltin, P. Sprechmann, R. Trettin, G. Stams & L. F. Beltrán-Morales, 2004b. Upper Pleistocene and Holocene paleosalinity and trophic state changes in relation to sea level variation in Rocha Lagoon, southern Uruguay. Journal of Paleolimnology 32: 117–135.CrossRefGoogle Scholar
  31. García-Rodríguez, F., D. Metzeltin, P. Sprechmann & L. F. Beltrán-Morales, 2004c. Upper Pleistocene and Holocene development of Castillos Lagoon in relation to sea level variation, SE Uruguay. Neues Jahrbuch für Geologie und Paläontologie und Monatshefte 2004: 641–661.Google Scholar
  32. Gordon, N., J. B. Adams & F. García-Rodríguez, 2008. The relationship between sea level and trophic state of coastal systems: a comparison between South African and South American systems. Shallow Lakes Congress, Punta del Este Uruguay: 119 pp.Google Scholar
  33. Grimm, E. C., 1987. CONISS: a Fortran 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Computers & Geosciences 13: 13–35.CrossRefGoogle Scholar
  34. Grimm, E. C., 2004. Tilia Software. Illinois State Museum, Research and Collection Center, Springfield, Illinois.Google Scholar
  35. Gupta, S. K & H. A. Polach, 1985. Radiocarbon Dating Practices at ANU. Handbook, Radiocarbon Laboratory, Research School of Pacific Studies, ANU, Australia.Google Scholar
  36. Hammer, Ø., D. A. T. Harper & P. D. Ryan, 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4(1): 9 pp.
  37. Heusser, C. J., 1971. Pollen and Spores of Chile. Modern Types of the Pteridophyta, Gymnospermae, and Angiopermae. The University of Arizona Press, Tucson: 167 pp.Google Scholar
  38. Inda, H., F. García-Rodríguez, L. del Puerto, V. Acevedo, D. Metzeltin, C. Castiñeira, R. Bracco & J. B. Adams, 2006. Relationships between trophic state, paleosalinity and climatic changes during the first Holocene marine transgression in Rocha Lagoon, southern Uruguay. Journal of Paleolimnology 35: 699–713.CrossRefGoogle Scholar
  39. Isla, F., 1998. Holocene coastal evolution of Buenos Aires. Quaternary South America and Antarctic Peninsula 11: 297–321.Google Scholar
  40. Karst, T. L. & J. P. Smol, 2000. Paleolimnological evidence of limnetic nutrient concentration equilibrium in a shallow, macrophyte-dominated lake. Aquatic Science 62: 20–38.CrossRefGoogle Scholar
  41. Lewin, J., 1960. The dissolution of silica from diatom walls. Geochima et Geochimica Acta 21: 182–198.CrossRefGoogle Scholar
  42. Little, J. & J. P. Smol, 2000. Changes in fossil midge (Chironomidae) assemblages in response to cultural activities in a shallow polymictic lake. Journal of Paleolimnology 23: 207–212.CrossRefGoogle Scholar
  43. Markgraf, V. & H. L. D’Antoni, 1978. Pollen Flora of Argentina, Modern Spore and Pollen Types of Pteridophyta, Gimnospermae and Angiospermae. The University of Arizona Press, Tucson: 208 pp.Google Scholar
  44. Martin, A. R. H., 1959. The stratigraphy and history of Groenvlei, a South African coastal fen. Australian Journal of Botany 7: 142–167.CrossRefGoogle Scholar
  45. Martin, L. & K. Suguio, 1992. Variation of coastal dynamics during the last 7000 years recorded in beachridge plains associated with river mouths: example from the Central Brazilian Coast. Palaeogeography, Palaeoclimatology, Palaeoecology 99: 119–140.CrossRefGoogle Scholar
  46. Metzeltin, D. & F. García Rodríguez, 2003. Las Diatomeas Uruguayas. DIRAC Ediciones, Facultad de Ciencias, Montevideo, Uruguay: 208 pp.Google Scholar
  47. Metzeltin, D., H. Lange-Bertalot & F. García-Rodríguez, 2005. Diatoms of Uruguay. In H. Lange-Bertalot (ed.), Iconographia Diatomologica, Vol. 15. A.R.G. Gantner Verlag distributed by Koeltz Scientific Books, Königstein: 737 pp.Google Scholar
  48. Montaña, J. R. & J. Bossi, 1995. Geomorfología de los humedales de la cuenca de la Laguna Merín en el departamento de Rocha. Prbides, Serie de Documentos de Trabajo, Rocha. 232 pp.Google Scholar
  49. PROBIDES (Programa de Conservación de la Biodiversidad y Desarrollo Sustentable en los Humedales del Este), 1999. Guía Ecoturística de la Reserva de Biosfera Bañados del Este. Ediciones Santillana, SA, Montevideo, Uruguay: 304 pp. ISBN: 9974-653-46-0.Google Scholar
  50. Ryves, D. B., R. W. Battarbee, C. Sherilyn & C. Fritz, 2009. The dilemma of disappearing diatoms: Incorporating diatom dissolution data into palaeoenvironmental modeling and reconstruction. Quaternary Science Reviews 28: 120–136.CrossRefGoogle Scholar
  51. Saunders, K. M. & K. H. Taffs, 2009. Palaeoecology: a tool to improve the management of Australian estuaries. Journal of Environmental Management. doi:  10.1016/j.jenvman.2009.03.001.
  52. Scheffer, M., 1998. Ecology of Shallow Lakes, 1st ed. Chapman & Hall, London.Google Scholar
  53. Scheffer, M. & E. Jeppesen, 2007. Regime shifts in shallow lakes. Ecosystems 10: 1–3.CrossRefGoogle Scholar
  54. Smol, J. P., 1985. The ratio of diatom frustules to chrysophycean statospores: a useful paleolimnological index. Hydrobiologia 123: 199–208.CrossRefGoogle Scholar
  55. Stockmarr, J., 1971. Tablets with spores used in absolute pollen analysis. Pollen Spores 13: 615–621.Google Scholar
  56. Stuiver, M. & P. J. Reimer, 1993. Radiocarbon calibration program rev. 3.0 (University of Washington, Quaternary Isotope Lab.). Radiocarbon 35: 215–230.Google Scholar
  57. Stutz, S., A. R. Prieto & F. I. Isla, 2002. Historia de la vegetación de la laguna Hinojales, sudeste de la provincia de Buenos Aires, Argentina. Ameghiniana 39: 85–94.Google Scholar
  58. Stutz, S., A. R. Prieto & F. I. Isla, 2006. Holocene evolution of the Mar Chiquita coastal lagoon area, Argentina, indicated by pollen analysis. Journal of Quaternary Science 21: 17–28.CrossRefGoogle Scholar
  59. Twiss, P. C., 1992. Predicted world distribution of C3 and C4 grass phytoliths. In Rapp, G. Jr. & H. Mullholland (eds), Phytolith Systematics. Plenum Press, New York: 113–127.Google Scholar
  60. van Dam, H., A. Mertens & J. Sinkeldam, 1994. A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands. Netherlands Journal of Aquatic Ecology 28: 117–133.CrossRefGoogle Scholar
  61. van Geel, B., 2001. Non-pollen palynomorphs. In Smoll, J. P., H. J. B. Birks & W. M. Last (eds), Tracking Environmental Change Using Lake Sediments. Vol. 3: Terrestrial, Algal and Siliceous Indicators, Vol. 3. Kluwer Academic Publishers, Dordrecht: 100–119.Google Scholar
  62. Vilanova, I., A. R. Prieto & M. Espinosa, 2006. Palaeoenvironmental evolution and sea-level fluctuations along the southeastern Pampa grasslands coast of Argentina during the Holocene. Journal of Quaternary Science 21: 227–242.CrossRefGoogle Scholar
  63. Witkowski, A., H. Lange-Bertalot & D. Metzeltin, 2000. Diatom flora of marine coasts I. In Lange-Bertalot, H. (ed.), Iconographia Diatomologica, Vol. 7. Koeltz Scientific Books, Königstein: 925 pp.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Felipe García-Rodríguez
    • 1
  • Silvina Stutz
    • 2
  • Hugo Inda
    • 1
  • Laura del Puerto
    • 3
  • Roberto Bracco
    • 4
    • 5
  • Daniel Panario
    • 6
  1. 1.Sección Oceanología, Maestría en Ciencias Ambientales, Facultad de CienciasUniversidad de la RepúblicaMontevideoUruguay
  2. 2.Laboratorio de Paleoecología y Palinología, Dpto. de Biología, Facultad de Ciencias Exactas y NaturalesUniversidad Nacional de Mar del PlataMar del PlataArgentina
  3. 3.División Antropología-Museo de Historia Natural y AntropologíaMontevideoUruguay
  4. 4.Laboratorio 14C, Museo Nacional de Historia Natural y Antropología (M.E.C.)-Cátedra de Radioquímica, Fac. de QuímicaMontevideoUruguay
  5. 5.Fac. de Química, Cátedra de RadioquímicaUniversidad de la RepúblicaMontevideoUruguay
  6. 6.UNCIEP, Facultad de CienciasUniversidad de la RepúblicaMontevideoUruguay

Personalised recommendations