Advertisement

Hydrobiologia

, Volume 646, Issue 1, pp 101–109 | Cite as

Waterfowl, macrophytes, and the clear water state of shallow lakes

  • Lars-Anders Hansson
  • Alice Nicolle
  • Christer Brönmark
  • Anders Hargeby
  • Åke Lindström
  • Gunnar Andersson
SHALLOW LAKES

Abstract

The importance of lake ecosystems for waterfowl remains a topic of debate. In order to assess how temporal variations in lake features, specifically shifts between alternative stable states, may interact with the waterfowl fauna, we performed a long-term (22 years) study of the shallow Lake Krankesjön, southern Sweden. Lower total numbers of waterfowl occurred during periods with low macrophyte cover and turbid water, than when submersed macrophytes flourished and the water was clear. Some specific functional groups of waterfowl, such as herbivores, invertebrate, and fish feeders, showed a positive relation to clear water and high macrophyte cover. Hence, our data suggest that some migratory waterfowl may select lakes based on water quality, thereby adjusting their large-scale migratory routes. On the other hand, omnivorous waterfowl exhibited their highest abundances during turbid conditions. Furthermore, waterfowl not primarily relying on food from the lake showed no response to fluctuations in turbidity or macrophyte cover, but followed regional trends in population dynamics. In our study lake, L. Krankesjön, we estimated that waterfowl remove less than 3% of the macrophyte biomass during a stable clear-water state with lush macrophyte beds. However, during transition periods between alternative stable states, when macrophyte biomass is lower and the plants already stressed, the consumption rate of waterfowl may have a stronger effect on lake ecosystem functioning.

Keywords

Waterfowl Bird Alternative stable state Lake Macrophyte Herbivory Grazing 

Notes

Acknowledgments

This study was partly funded by grants from the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (FORMAS), the Swedish Research Council (VR), and the Linné Grant on animal migration (“CAnMove”; VR). The Swedish Bird Survey is supported by grants from the Monitoring Programme of the Swedish Environmental Protection Board. We are most grateful to the hundreds of volunteers who performed the census of the birds within The Swedish Bird Survey. We also thank Irmgard Blindow and Hans Källander for providing valuable input to this study, and Romi Burks for thorough editing of the manuscript.

References

  1. Berglund, B., K. Curry-Lindahl, H. Luther, V. Olsson, W. Rodhe & G. Sellerberg, 1963. Ecological studies on the Mute swan (Cygnus olor) in southern Sweden. Acta vertebratica 2: 167–188.Google Scholar
  2. Bergman, E., L.-A. Hansson & G. Andersson, 1999. Biomanipulation in a theoretical and historical perspective. Hydrobiologia 404: 53–58.CrossRefGoogle Scholar
  3. Blindow, I., G. Andersson, A. Hargeby & S. Johansson, 1993. Long-term pattern of alternative stable state in two shallow eutrophic lakes. Freshwater Biology 30: 159–167.CrossRefGoogle Scholar
  4. Blindow, I., A. Hargeby & G. Andersson, 2002. Seasonal changes of mechanisms maintaining clear water in a shallow lake with abundant Chara vegetation. Aquatic Botany 72: 315–334.CrossRefGoogle Scholar
  5. Brönmark C., J. Brodersen, B. Chapman, A. Nicolle, A. P. Nilsson, C. Skov & L.-A. Hansson, 2009. The importance of seasonal fish migration for the dynamics of shallow lake ecosystems. Hydrobiologia. doi: 10.1007/s10750-010-0165-3.
  6. Chaichana, R., B. Moss & R. T. Leah, 2009. Effects of water birds on aquatic vegetation in a shallow lake. Verhandlungen der Internationalen Vereinigung fur Theoretische und Angewandte Limnologie 30: 741–744.Google Scholar
  7. Eriksson, M., 1985. Prey detectability for fish-eating birds in relation to fish density and water transparency. Ornis Scandinavica 16: 1–7.CrossRefGoogle Scholar
  8. Haas, K., U. Kohler, S. Diehl, P. Kohler, S. Dietrich, S. Holler, A. Jaensch, M. Niedermaier & J. Vilsmeier, 2007. Influence of fish on habitat choice of water birds: a whole system experiment. Ecology 88: 2915–2925.CrossRefPubMedGoogle Scholar
  9. Hanson, M. & M. Butler, 1994. Response to food web manipulation in a shallow waterfowl lake. Hydrobiologia 279(280): 457–466.CrossRefGoogle Scholar
  10. Hansson, L.-A., H. Annadotter, E. Bergman, S. F. Hamrin, E. Jeppesen, T. Kairesalo, E. Luokkanen, P.-Å. Nilsson, M. Søndergaard & J. A. Strand, 1998. Biomanipulation as an application of food chain theory: constraints, synthesis and recommendations for temperate lakes. Ecosystems 1: 558–574.CrossRefGoogle Scholar
  11. Hansson, L. A., C. Bronmark, P. A. Nilsson & K. Abjornsson, 2005. Conflicting demands on wetland ecosystem services: nutrient retention, biodiversity or both? Freshwater Biology 50: 705–714.CrossRefGoogle Scholar
  12. Hansson, L.-A., A. Nicolle, J. Brodersen, P. Romare, C. Skov, P. A. Nilsson & C. Brönmark, 2007. Consequences of fish predation, migration and juvenile ontogeny on zooplankton spring dynamics. Limnology and Oceanography 52: 696–706.Google Scholar
  13. Hargeby, A., G. Andersson, I. Blindow & S. Johanson, 1994. Trophic web structure in a shallow eutrophic lake during a dominance shift from phytoplankton to submerged macrophytes. Hydrobiologia 279(280): 83–90.CrossRefGoogle Scholar
  14. Hargeby, A., I. Blindlow & L.-A. Hansson, 2004. Shifts between clear and turbid states in a shallow lake: multi-causal stress from climate, nutrients and biotic interactions. Archiv fur Hydrobiologie 161: 433–454.CrossRefGoogle Scholar
  15. Hargeby, A., I. Blindow & G. Andersson, 2007. Long-term patterns of shifts between clear and turbid states in Lake Krankesjön and Lake Tåkern. Ecosystems 10: 28–35.CrossRefGoogle Scholar
  16. Jeppesen, E., J. P. Jensen, P. Kristensen, M. Søndergaard, E. Mortensen, O. Sortkjær & K. Olrik, 1990. Fish manipulation as a lake tool in shallow, eutrophic, temperate lakes 2: threshold levels, long-term stability and conclusions. Hydrobiologia 200(201): 219–227.CrossRefGoogle Scholar
  17. Källander, H., L.-A. Hansson, C. Brönmark & A. Nicolle, 2009. Waterfowl in Lake Krankesjön. Ornis Svecica 19: 65–87.Google Scholar
  18. Kiørboe, T., 1980. Distribution and production of submerged macrophytes in Tipper Grund (Ringkøbing Fjord, Denmark), and the impact of waterfowl grazing. Journal of Applied Ecology 17: 675–687.CrossRefGoogle Scholar
  19. Lindström Å., M. Green, R. Ottvall & S. Svensson, 2009. Övervakning av fåglarnas populationsutveckling. Yearly report 2008. Institute of Ecology, Lund: 80 pp.Google Scholar
  20. Lodge D. M., G. Cronin, E. van Donk & A. Froelich, 1998. Impact of herbivory on plant standing crop: comparisons among biomes, between vascular and non-vascular plants, and among freshwater herbivore taxa. In Jeppesen, E., M. Søndergaard, M. Søndergaard & K. Christoffersen (eds), The Structuring Role of Submerged Macrophytes in Lakes. Ecological Studies 131. Springer Verlag, New York: 149–174.Google Scholar
  21. Marklund, O., H. Sandsten, L. A. Hansson & I. Blindow, 2002. Effects of waterfowl and fish on submerged vegetation and macroinvertebrates. Freshwater Biology 47: 2049–2059.CrossRefGoogle Scholar
  22. Milberg, P., L. Gezelius, I. Blindow, L. Nilsson & T. Tyrberg, 2002. Submerged vegetation and the variation in the autumn waterfowl community at Lake Takern, southern Sweden. Ornis Fennica 79: 72–81.Google Scholar
  23. Mitchell, S. F. & R. T. Wass, 1995. Food-consumption and fecal deposition of plant nutrients by black swans (Cygnus aratus) in a shallow New-Zealand lake. Hydrobiologia 306: 189–197.CrossRefGoogle Scholar
  24. Moss, B., 1990. Engineering and biological approaches to the restoration from eutrophication of shallow lakes in which aquatic plant communities are important components. Hydrobiologia 200(201): 367–377.CrossRefGoogle Scholar
  25. Moss, B., D. Stephen, D. J. Balayla, E. Bécares, S. E. Collings, C. Fernández-Aláez, M. Fernández-Aláez, C. Ferriol, P. García, J. Gomá, M. Gyllström, L.-A. Hansson, J. Hietala, T. Kairesalo, M. R. Miracle, S. Romo, J. Rueda, V. Russell, A. Ståhl-Delbanco, M. Svensson, K. Vakkilainen, M. Valentín, W. J. Van De Bund, E. van Donk, E. Vicente & M. J. Villena, 2004. Continental-scale patterns of nutrient and fish effects on shallow lakes: synthesis of a pan-European mesocosm experiment. Freshwater Biology 49: 1633–1649.CrossRefGoogle Scholar
  26. Nienhuis, P., 1978. An ecosystem study in Lake Grevelingen, a former estuary in the S.W. Netherlands. Kieler Meersforschungen 4: 247–255.Google Scholar
  27. Nolet, B. A., O. Langevoord, R. M. Bevan, K. R. Engelaar, M. Klaassen, R. J. W. Mulder & S. Van Dijk, 2001. Spatial variation in tuber depletion by swans explained by differences in net intake rates. Ecology 82: 1655–1667.CrossRefGoogle Scholar
  28. Pannekoek, J. & A. J. van Strien, 2001. TRIM 3 Manual. TRends and Indices for Monitoring Data. Statistics Netherlands Voorburg Research paper no 0102.Google Scholar
  29. Reichholf, J., 1973. Die Bestandsutwicklung des Höcherschwans Cygnus olor und seine einordnung in das ökosystem der inn stau seen. Anzeiger der Ornitologischen Gesellschaft in Bayern 12: 237–247.Google Scholar
  30. Rybicki, N. B. & J. M. Landwehr, 2007. Long-term changes in abundance and diversity of macrophyte and waterfowl populations in an estuary with exotic macrophytes and improving water quality. Limnology and Oceanography 52: 1195–1207.CrossRefGoogle Scholar
  31. Scheffer, M., 1990. Multiplicity of stable states in freshwater systems. Hydrobiologia 200(201): 475–486.CrossRefGoogle Scholar
  32. Søndergaard, M., T. Lauridsen, E. Jeppesen & L. Bruun, 1998. Macrophyte-waterfowl interactions: tracking a variable resource and the impact of herbivory on plant growth. In Jeppesen, E., M. Søndergaard, M. Søndergaard & K. Christoffersen (eds), The Structuring Role of Submerged Macrophytes in Lakes. Ecological Studies 131. Springer Verlag, New York: 298–306.Google Scholar
  33. Søndergaard, M., E. Jeppesen, T. Lauridsen, C. Skov, E. van Nes, R. Roijackers, E. Lammens & R. Portielje, 2007. Lake restoration: successes, failures and long-term effects. Journal of Applied Ecology 44: 1095–1105.CrossRefGoogle Scholar
  34. Sponberg, A. F. & D. M. Lodge, 2005. Seasonal belowground herbivory and a density refuge from waterfowl herbivory for Vallisneria americana. Ecology 86: 2127–2134.CrossRefGoogle Scholar
  35. van Donk, E. & A. Otte, 1996. Effects of grazing by fish and waterfowl on the biomass and species composition of submerged macrophytes. Hydrobiologia 340: 285–290.CrossRefGoogle Scholar
  36. Wagner, B. M. A. & L. A. Hansson, 1998. Food competition and niche separation between fish and the Red-necked Grebe Podiceps grisegena (Boddaert, 1783). Hydrobiologia 368: 75–81.CrossRefGoogle Scholar
  37. Wollhead, J., 1994. Birds in the trophic web of Lake Esrom, Denmark. Hydrobiologia 280: 29–38.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Lars-Anders Hansson
    • 1
  • Alice Nicolle
    • 1
  • Christer Brönmark
    • 1
  • Anders Hargeby
    • 2
  • Åke Lindström
    • 1
  • Gunnar Andersson
    • 1
  1. 1.Institute of EcologyLund UniversityLundSweden
  2. 2.IFM Linköpings UniversityLinköpingSweden

Personalised recommendations