, Volume 648, Issue 1, pp 157–174 | Cite as

Ostracod-based environmental reconstruction over the last 8,400 years of Nam Co Lake on the Tibetan plateau

  • Liping Zhu
  • Ping Peng
  • Manping Xie
  • Junbo Wang
  • Peter Frenzel
  • Claudia Wrozyna
  • Antje Schwalb


From a 332-cm long lacustrine core taken at 60 m water depth and 25 surface sediment samples taken at different water depth sites in Nam Co lake (4,718 m a.s.l.) in the middle-south part of the Tibetan Plateau, we identified nine species of ostracods (Crustacea: Ostracoda) belonging to six genera. Using lithological data, auto-ecological information of the recovered taxa and an ostracod-based transfer function for water depth reconstruction, we distinguished three main environmental stages over the past 8,400 years: during Stage I (8,400–6,800 yr BP), the climate changed from warm-humid to cold-humid, and eventually to cold-arid. The water depth of the site was much lower than today and changed from an estimated 50 to 20–30 m. During Stage II (6,800–2,900 yr BP), environmental conditions were again warm-humid, turning into a cold-arid episode. The lake water depth initially stayed much shallower than today, but then gradually deepened to around 50 m. At the earlier period of Stage III (2,900 yr BP–present), the climate became again warm-humid from cold-arid status. There was a cold-dry event between 1,700 and 1,500 yr BP, which intensified afterward while the surface run off weakened. Early in this stage, lake depth decreased slightly, but then it continuously deepened to 60 m. Our results revealed that central Tibet experienced wavily warm toward tendency in early Holocene, a shift from warm-humid to cold-dry conditions in the middle Holocene, and from warm-humid to cold-dry conditions in the late Holocene. They also show that ostracod assemblages are not only indicative of cold-warm conditions, but are also usable to imply the dry–wet status of a lake area by the inferring water depth variations. Finally, this study provides baseline data on (natural) climate change in this mountain region against which to compare global change impacts.


Holocene environmental change Lacustrine core Ostracoda Tibetan plateau Water depth reconstruction 



This work was jointly supported by the China National Basic Research Program (Grant No. 2005CB422002), the NSFC project (Grant No. 40871099), the CAS project (Grant No. KZCX2-YW-146-4), and the Sino-German TiP Program. The authors would like to thank Mr. Xiugao Zhou from China University of Geosciences, Wuhan, and Dr. Steffen Mischke from the Institute of Paleontology, Free University of Berlin for their help with ostracod identification. We also thank Mrs. Margaret Joyner from Florida University for improving the English style of the first version. Great thanks must be given to the guest editor, Dr. Hilde Eggermont, for her patience and kindness to improve our paper.


  1. Baxby, M., R. L. Patience & K. D. Bartle, 1994. The origin and diagenesis of sedimentary organic nitrogen. Journal of Petrologic Geology 17: 211–230.CrossRefGoogle Scholar
  2. Bhatia, S. B., R. S. Batra & B. S. Kotlia, 1985. Ostracods and palaeoecology of the karewa formation of Hirpur and Romushi Sections, Kashmir, India. Current Trends in Geology 6 (Climate and Geology of Kashmir): 45–52.Google Scholar
  3. Birks, H. J. B., 1998. Numerical tools in palaeolimnology – progress, potentialities, and problems. Journal of Paleolimnology 20: 307–332.CrossRefGoogle Scholar
  4. Boomer, I., D. J. Horne & I. J. Slipper, 2003. The use of ostracods in palaeoenvironmental studies, or what can you do with an ostracod shell? Paleontological Society Papers 9: 153–179.Google Scholar
  5. Bremner, J. M. & C. S. Mulvaney, 1982. Nitrogen-total. In Page, A. L. (ed.), Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties, 2nd ed. ASA and SSSA, Madison, WI: 595–624.Google Scholar
  6. Carbonel, P., J. P. Colin, D. L. Danielopol, H. Löffler & I. Neustrueva, 1988. Paleoecology of limnic ostracodes: A review of some major topics. Palaeogeography, Palaeoclimatology, Palaeoecology 62: 418–461.CrossRefGoogle Scholar
  7. Chen, K. Z., J. M. Bowler & K. Kelts, 1990. Palaeoclimatic evolution within the Qinghai-Xizang (Tibet) Plateau in the last 40000 years. Quaternary Science 10(3): 21–31. (in Chinese with English abstract).Google Scholar
  8. Curry, B., 1999. An environmental tolerance index for ostracods as indicators of physical and chemical factors in aquatic habitats. Palaeogeography Palaeoclimatology Palaeogeology 148: 51–63.CrossRefGoogle Scholar
  9. Danielopol, D. L., M. Handl & Y. Yin, 1993. Benthic ostracods in the prealpine deep Lake Mondsee. Notes on their origin and distribution. In McKenzie, K. G. & J. P. Jones (eds.), Ostracoda in the Earth and Life Science. Balkema, Rotterdam: 465–479.Google Scholar
  10. de Deckker, P., 1981. Ostracods of athalassic saline lakes. Hydrobiologia 81: 131–144.CrossRefGoogle Scholar
  11. de Deckker, P., 1988. An account of the techniques using ostracods in palaeolimnology in Australia. Palaeogeography, Palaeoclimatology, Palaeoecology 62: 463–475.CrossRefGoogle Scholar
  12. Fan, H., F. Gasse, A. Huc, Y. F. Li, A. Sifeddine & I. Soulie-Marsche, 1996. Holocene environmental changes in Bangong Co basin (Western Tibet). Part 3. Biogenic remains. Palaeogeography, Palaeoclimatology, Palaeoecology 120: 65–78.CrossRefGoogle Scholar
  13. Feng, S., M. C. Tang & D. M. Wang, 1998. New evidence for the Qinghai-Xizang (Tibet) Plateau as a pilot region of climatic fluctuation in China. Chinese Science Bulletin 43: 1745–1749.CrossRefGoogle Scholar
  14. Forester, R. M., 1991. Ostracod assemblages from springs in the western United States: implications for paleohydrology. Memoirs of the Entomological Society of Canada 155: 181–201.Google Scholar
  15. Forester, R. M., L. D. Delorme & J. P. Bradbury, 1987. Mid-Holocene climate in northern Minnesota. Quaternary Research 28: 263–273.CrossRefGoogle Scholar
  16. Gasse, F. & E. Derbyshire, 1996. Environmental changes in the Tibetan Plateau and surrounding areas – preface. Palaeogeography, Palaeoclimatology, Palaeoecology 120: 1–3.CrossRefGoogle Scholar
  17. Gasse, F., M. Anold, J. Ch. Fontes, M. Fort, E. Gibert, A. Huc, B. Y. Li, Y. F. Li, Q. Liu, F. Mélières, E. van Campo, F. B. Wang & Q. S. Zhang, 1991. A 13000-year climate record from Western Tibet. Nature 353: 742–745.CrossRefGoogle Scholar
  18. Gasse, F., J. Ch. Fontes, E. van Campo & K. Wei, 1996. Holocene environmental changes in Bangong Co basin (Western Tibet). Part 4. Discussion and conclusions. Palaeogeography, Palaeoclimatology, Palaeoecology 120: 79–92.CrossRefGoogle Scholar
  19. Grimm, E. C., 1987. CONISS: a Fortan 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Geosciences Computer 13: 13–35.CrossRefGoogle Scholar
  20. Guan, Z. H., C. Y. Chen, Y. X. Ou, Y. Q. Fan, Y. S. Zhang & Z. M. Chen, 1984. Rivers and Lakes in Tibet. Science Press, Beijing: 176–182. (in Chinese).Google Scholar
  21. Holmes, J. A., 1992. Nonmarine ostracods as Quaternary palaeoenvironmental indicators. Progress in Physical Geography 16: 405–431.CrossRefGoogle Scholar
  22. Huang, B. R., 1964. Ostracods from Gansen district, Qaidam basin. Acta Palaeontologica Sinica 12: 241–270. (in Chinese).Google Scholar
  23. Huang, B. R., 1984. Ostracods of Pliocene and Early Pleistocene in Gonghe Basin, Qinghai. In Collections of Nanjing Institute of Geology and Palaeontology, CAS (19). Science Press, Beijing: 1–12 (in Chinese).Google Scholar
  24. Huang, B. R., H. R. Yang & K. Y. You, 1982. Pliocene and Quaternary ostracoda from southern and southwestern Xizang. Palaeobiology of Xizang: the fourth part. Science Press, Beijing: 326–348. (in Chinese).Google Scholar
  25. Huang, B. R., L. F. Yang & Y. Q. Fan, 1985. Ostracods in modern lake bottom sediments of Tibet. Acta Micropalaeonotologica Sinica 2: 369–376. (in Chinese with English abstract).Google Scholar
  26. IEDQPA & NIGP (Institute of Exploration and Development of Qinghai Petroleum Administration, Nanjing Institute of Geology and Palaeontology of Academia Sinica), 1988. Tertiary ostracod fauna from Qaidam Basin, NW China. Nanjing University Press, Nanjing: 22–30 (in Chinese).Google Scholar
  27. IPCC, 2007. Fourth assessment report – climate change 2007. Integrated Report, by core contributors, Pachauri, R. K. & A. Reisinger (eds). IPCC, Geneva, Switzerland: 1–104.Google Scholar
  28. Kashiwaya, K., T. Masuzawa, H. Morinaga, K. Yaskawa, B. Y. Yuan, J. Q. Liu & Z. Y. Gu, 1995. Changes in hydrological conditions in the central Qing-Zang (Tibetan) Plateau inferred from Lake Bottom sediments. Earth and Planetary Science Letters 135: 31–39.CrossRefGoogle Scholar
  29. Keen, M. C., 1971. A palaeoecological study of the ostracod Hemicyprideis montosa (Jones et Sherborn) from the Sannoisian of NW Europe. Bulletin du Centre de Recherches Pau SNPA 5(Suppl): 523–543.Google Scholar
  30. Krishnamurthy, R. V., S. Bhattacharya & K. Sheela, 1986. Palaeoclimatic changes deduced from 13C/12C and C/N ratios of Karewa lake sediments, India. Nature 323: 150–152.CrossRefGoogle Scholar
  31. Kutzbach, J. E., W. L. Prell & W. F. Ruddiman, 1993. Sensitivity of Eurasian climate to surface uplift of the Tibetan Plateau. Journal of Geology 101: 177–190.CrossRefGoogle Scholar
  32. Li, Y. F., Q. S. Zhang, B. Y. Li & F. T. Liu, 1991. Late Pleistocene ostracoda from Bangong Lake, Xizang and its palaeogeographic significance. Acta Micropalaeontologica Sinica 8: 57–64. (in Chinese with English abstract).Google Scholar
  33. Li, Y. F., Q. S. Zhang & B. Y. Li, 1994. Ostracod fauna and environmental changes during the past 17,000 years in western Tibet. Acta Geographica Sinica 49: 46–54. (in Chinese with English abstract).Google Scholar
  34. Lin, X., L. P. Zhu, Y. Wang, J. B. Wang, M. P. Xie, J. T. Ju, R. Mäusbacher & A. Schwalb, 2008. Environmental changes reflected by n-alkanes of lake core in Nam Co on the Tibetan Plateau since 8.4 ka BP. Chinese Science Bulletin 53(19): 3051–3057.CrossRefGoogle Scholar
  35. Lister, G. S., K. Kelts, K. Z. Chen, J. Q. Yu & F. Niessen, 1991. Lake Qinghai, China: closed-basin lake levels and the oxygen isotope record for ostracoda since the latest Pleistocene. Palaeogeography Palaeoclimatology Palaeogeology 84: 141–162.CrossRefGoogle Scholar
  36. Liu, G. X., Y. F. Shi, Y. P. Shen & M. Hong, 1997. Holocene megathermal environment in the Tibetan Plateau. Journal of Glaciology and Geocryology 19(2): 114–123. (in Chinese with English abstract).Google Scholar
  37. Liu, Z. C., Y. J. Wang, Y. Chen, X. S. Li, Q. C. Li, Y. Wang & Y. Chen, 1998. Magnetostratigraphy and sedimentologically derived geochronology of the Quaternary lacustrine deposits of a 3000 m thick sequence in the central Qaidam basin, western China. Palaeogeography, Palaeoclimatology, Palaeoecology 140: 459–473.CrossRefGoogle Scholar
  38. Liu, X. D., Z. Y. Yin, X. M. Shao & N. S. Qin, 2006. Temporal trends and variability of daily maximum and minimum, extreme temperature events, and growing season length over the eastern and central Tibetan Plateau during 1961–2003. Journal of Geophysical Research 111: D19109.Google Scholar
  39. Liu, Y., Z. S. An, H. W. Linderholm, D. L. Chen, H. M. Song, Q. F. Cai, J. Y. Sun & H. Tian, 2009. Annual temperatures during the last 2485 years in the mid-eastern Tibetan Plateau inferred from tree rings. Science in China (Series D-Earth Sciences) 52(3): 348–359.CrossRefGoogle Scholar
  40. Meisch, C., 2000. Freshwater Ostracoda of Western and Central Europe. Spektrum, Heidelberg: 522 pp.Google Scholar
  41. Meyers, P. A., 1994. Preservation of elemental and isotopic sources identification of sedimentary organic matter. Chemical Geology 114: 289–302.CrossRefGoogle Scholar
  42. Miehe, G., S. Miehe, F. Schlutz, K. Kaiser & L. Duo, 2006. Palaeoecological and experimental evidence of former forests and woodlands in the treeless desert pastures of Southern Tibet (Lhasa, AR Xizang, China). Palaeogeography, Palaeoclimatology, Palaeoecology 242: 54–67.CrossRefGoogle Scholar
  43. Mischke, S. & B. Wünnemann, 2006. The Holocene salinity history of Bosten Lake (Xinjiang, China) inferred from ostracod species assemblages and shell chemistry: possible palaeoclimatic implications. Quaternary International 154–155: 100–112.CrossRefGoogle Scholar
  44. Mischke, S., D. Fuchs, F. Riedel & M. E. Schudack, 2002. Mid to late Holocene paleoenvironment of eastern Lake Juyanze (north-western China) based on ostracods and stable isotopes. Geobios 35: 99–110.CrossRefGoogle Scholar
  45. Mischke, S., U. Herzschuh, H. Kurschner, D. Fuchs, J. W. Zhang, M. Fei & Z. C. Sun, 2003. Sub-recent Ostracoda from the Qilian Mountains (NW China) and their ecological significance. Limnologica 33: 280–292.Google Scholar
  46. Mischke, S., U. Herzschuh, Z. C. Sun, Z. Z. Qiao, N. A. Sun & A. M. Zander, 2006. Middle Pleistocene Ostracoda from a large freshwater lake in the presently dry Qaidam Basin (NW China). Journal of Micropalaeontology 25: 1–8.CrossRefGoogle Scholar
  47. Mischke, S., U. Herzschuh, G. Massmann & C. Zhang, 2007. An ostracod-conductivity transfer function for Tibetan lakes. Journal of Paleolimnology 38(4): 509–524.CrossRefGoogle Scholar
  48. Oldfield, F. (ed.), 1998. IGBP report 45: past global changes (PAGES). IGBP, Stockholm: 25 pp.Google Scholar
  49. Pang, Q. Q., M. P. Zheng & W. G. Liu, 1985. Ostracod fossils in the Qilin Lake-Bange Lake Areas, Tibet, and their stratum significance during the Late Cenozoic. Geological Collections of Qinghai-Tibet Plateau 16: 243–264. (in Chinese).Google Scholar
  50. Peng, J. L., 1997. Ostracod assemblages and environmental changes during 13,000–4500 a B.P. in Peiku Co, Tibet. Acta Micropalaeontologica Sinica 14: 239–254. (in Chinese with English abstract).Google Scholar
  51. Peng, J. L., 2002. A preliminary ecological analysis on the late Quaternary ostracods from the Heqing Basin, Yunnan. Acta Micropalaeontologica Sinica 19: 144–156. (in Chinese with English abstract).Google Scholar
  52. Schwalb, A., S. J. Burns, G. Cusminsky, K. Kelts & V. Markgraf, 2002. Assemblage diversity and isotopic signals of modern ostracod and host waters from Patagonia, Argentina. Palaeogeography, Palaeoclimatology, Palaeoecology 187: 323–339.CrossRefGoogle Scholar
  53. Shao, Z. G., X. G. Meng, D. G. Zhu, J. Wang, C. B. Yang, J. N. Han, J. Yu & Q. W. Meng, 2004. Variation of precipitation in Nam Co, Tibet, since the late Pleistocene and its environmental response. Journal of Geomechanics 10: 337–343. (in Chinese with English abstract).Google Scholar
  54. Shen, Z. S., G. Chen & C. S. Le, 1993. The division and sedimentary environment of quaternary salt-bearing Strata in Qaidam Basin. Geological Publishing House, Beijing: 62–67. (in Chinese with English abstract).Google Scholar
  55. Shen, J., X. Q. Liu, R. Matsumoto, S. H. Wang & X. D. Yang, 2005. A high-resolution climatic change since the Late Glacial Age inferred from multi-proxy of sediments in Qinghai Lake. Science in China (Series D) 48: 742–751.CrossRefGoogle Scholar
  56. Stager, J. C. & P. A. Mayewski, 1997. Abrupt early to mid-Holocene climatic transition registered at the equator and the poles. Science 276: 1834–1836.CrossRefGoogle Scholar
  57. Stuiver, M., 1975. Climate versus changes in 13C content of the organic component of lake sediments during the Quaternary. Quaternary Research 5: 251–262.CrossRefGoogle Scholar
  58. Sun, Z. C. & Z. Liu, 1995. Areal distribution of Quaternary ostracod assemblages and its main controlling factor in Chaidam Basin, NW China. In Riha, J. (ed.), Ostracoda and Biostratigraphy. Balkema, Rotterdam: 277–281.Google Scholar
  59. Thompson, L. G., T. Yao, E. Mosley-Thompson, M. E. Davis, K. A. Henderson & P. N. Lin, 2000. A high-resolution millennial record of the south Asian monsoon from Himalayan ice cores. Science 289: 1916–1919.CrossRefPubMedGoogle Scholar
  60. van der Meeren, T., Y. Khand & K. Martens, 2009. On recent species of Tonnacypris Diebel & Pietrzeniuk, 1975 (Crustacea, Ostracoda), with new species descriptions from Mongolia. Zootaxa 2015: 1–41.Google Scholar
  61. Wang, S. M. & H. S. Dou, 1998. Records of Lakes in China. Sciences, Beijing: 7 pp. (in Chinese).Google Scholar
  62. Wang, J. B. & L. P. Zhu, 2005. Environment change reflected by lake sediments on Tibetan Plateau: progress and prospect. Progress in Geography 24(5): 1–12. (in Chinese with English abstract).Google Scholar
  63. Wang, R. L., S. C. Scarpitta, S. C. Zhang & M. P. Zheng, 2002. Later Pleistocene/Holocene climate conditions of Qinghai-Xizhang Plateau (Tibet) based on carbon and oxygen stable isotopes of Zabuye Lake sediments. Earth and Planetary Science Letters 203: 461–477.CrossRefGoogle Scholar
  64. Wang, J. B., L. P. Zhu, G. Daut, J. T. Ju, X. Lin, Y. Wang & X. L. Zhen, 2009. Investigation of bathymetry and water quality of Lake Nam Co, the largest lake on the central Tibetan Plateau, China. Limnology 10: 149–158.CrossRefGoogle Scholar
  65. Wrozyna, C., P. Frenzel, M. Xie, L. Zhu & A. Schwalb. 2009a. A taxonomical and ecological overview of recent and Holocene ostracodes of the Nam Co Region, Southern Tibet. Quaternary Sciences 29(4): 665–677.Google Scholar
  66. Wrozyna, C., P. Frenzel, P. Steeb, L. P. Zhu & A. Schwalb, 2009b. Recent lacustrine ostracoda and a first transfer function for palaeo-water depth estimation in Nam Co, southern Tibetan Plateau. Revista Española de Micropaleontología 41(1–2): 1–20.Google Scholar
  67. Wu, Z. H., X. T. Zhao, Z. H. Wu, J. C. Zhou, F. H. Yan, X. X. Mai & D. G. Zhu, 2004a. Paleovegetation, paleoclimate and lake-level change since 120 ka BP in Nam Co, Central Xizang. Acta Geologica Sinica 78: 242–252. (in Chinese with English abstract).Google Scholar
  68. Wu, Z. H., X. T. Zhao, Z. H. Wu, X. C. Wu, C. J. Zhou, F. H. Yan & D. G. Zhu, 2004b. Geological records of climate and environment changes during the Holocene in Nam Co Lake and its adjacent areas. Journal of Glaciology and Geocryology 26: 275–283. (in Chinese with English abstract).Google Scholar
  69. Wu, G. X., Y. M. Liu, X. Liu, A. M. Duan & X. Y. Liang, 2005. How Tibetan plateau heating influences summer climatic distribution of Asia. Atmospheric Science 29: 47–56. (in Chinese with English abstract).Google Scholar
  70. Yang, F., 1988. Distribution of the brackish-salt water ostracods in northwestern Qinghai Plateau and its geological significance. In Hanai, T., N. Ikeya & K. Ishizaki (eds.), Evolutionary Biology of Ostracoda, Its Fundamentals and Applications. Elsevier, Amsterdam: 519–530.CrossRefGoogle Scholar
  71. Yang, F., Z. C. Sun & C. C. Cao, 1994. Discovery of a spinose new genus Qaidamocypris from the terrestrial Quaternary in the Qaidam Basin and its significance. Acta Micropalaeontologica Sinica 12: 275–283. (in Chinese with English abstract).Google Scholar
  72. Yang, F., Z. C. Sun, Z. Q. Ma & Y. H. Zhang, 1997. Quaternary ostracode zones and magnetotratigraphic profiles in the Qaidam Basin. Acta Micropalaeontologica Sinica 14: 378–390. (in Chinese with English abstract).Google Scholar
  73. Yang, F., Z. C. Sun, Y. H. Zhang & Z. Z. Qiao, 2002. Taxonomic significance of nodal ornamentation of Quaternary genus Ilyocypris (Ostracoda) from Qaidam Basin, Qinghai Province. Acta Micropalaeontologica Sinica 19: 15–32. (in Chinese with English abstract).Google Scholar
  74. Yao, T. D. & B. Q. Xu, 2005. Study on the environmental and climatic change over the last 2000 years in the Qinghai-Tibet Plateau. Science and Technology Review (1): 14–17 (in Chinese with English abstract).Google Scholar
  75. Yin, Y. & K. Martens, 1997. On a new species of Fabaeformiscandona Krstic, 1972 (Crustacea, Ostracoda) from China, with a preliminary checklist of recent Chinese non-marine ostracods. Hydrobiologia 357: 117–128.CrossRefGoogle Scholar
  76. Yin, Y., W. Geiger & K. Martens, 1999. Effects of genotype and environment on phenotypic variability in Limnocythere inopoinata (Crustacea: Ostracoda). Hydrobiologia 400: 85–114.CrossRefGoogle Scholar
  77. Zhang, P. X., B. Z. Zhang, G. M. Qian, H. J. Li & L. M. Xu, 1994. The study of paleoclimatic parameter of Qinghai Lake since Holocene. Quaternary Sciences 14(2): 225–238. (in Chinese with English abstract).Google Scholar
  78. Zhao, X. T., D. G. Zhu, F. H. Yan, Z. H. Wu, Z. B. Ma & X. S. Mai, 2003. Climate change and lake-level variation of Nam Co, Tibet, since the last interglacial stage. Quaternary Sciences 23(1): 41–52. (in Chinese with English abstract).Google Scholar
  79. Zheng, D., 1996. The system of physico-geographical regions of the Qinghai-Xizang (Tibet) plateau. Science in China (Series D-Earth Sciences) 39(4): 410–417.Google Scholar
  80. Zhu, L. P., Y. F. Li & B. Y. Li, 2002. The Ostracoda assemblages and their environmental significance in the Chen Co area, southern Tibet in the last 1400 years. Journal of Geographical Sciences 12(4): 451–459.CrossRefGoogle Scholar
  81. Zhu, D. G., X. G. Meng, X. T. Zhao, Z. G. Shao, Z. B. Ma, C. B. Yang, J. P. Wang & Z. H. Wu, 2004. Lake-level change of Nam Co, Tibet, since the late Pleistocene and environment information of clay minerals in lacustrine deposits. Journal of Geomechanics 10: 300–309. (in Chinese with English abstract).Google Scholar
  82. Zhu, D. G., X. G. Meng, X. T. Zhao, Z. G. Shao, Z. B. Ma, C. B. Yang, Z. H. Wu & J. P. Wang, 2005. Sedimentary evolution of the Nam Co basin, Tibet, since 116 ka BP and Qinghai-Tibet Plateau uplift. Journal of Geomechanics 11: 172–180. (in Chinese with English abstract).Google Scholar
  83. Zhu, L. P., X. Lin, Y. F. Li, B. Y. Li & M. P. Xie, 2007. Ostracoda assemblages in core sediments and their environmental significance in a small lake in northwest Tibet, China. Arctic Antarctic and Alpine Research 39: 658–662.CrossRefGoogle Scholar
  84. Zhu, L. P., X. L. Zhen, J. B. Wang, H. Y. Lü, M. P. Xie, H. Kitagawa & G. Possnert, 2008a. A 30,000-year record of environmental changes inferred from Lake Chen Co, Southern Tibet. Journal of Paleolimnology 42: 343–358.CrossRefGoogle Scholar
  85. Zhu, L. P., Y. H. Wu, J. B. Wang, X. Lin, J. T. Ju, M. P. Xie, M. H. Li, G. Daut, R. Mäusbacher & A. Schwalb, 2008b. Environmental changes reflected from the core sediments since 8.4 ka in Nam Co, central Tibet of China. Holocene 18(5): 831–839.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Liping Zhu
    • 1
  • Ping Peng
    • 1
    • 2
  • Manping Xie
    • 3
  • Junbo Wang
    • 1
  • Peter Frenzel
    • 4
  • Claudia Wrozyna
    • 5
  • Antje Schwalb
    • 5
  1. 1.Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau ResearchChinese Academy of SciencesBeijingChina
  2. 2.Graduate University of Chinese Academy of SciencesBeijingChina
  3. 3.Yunnan Normal UniversityKunmingChina
  4. 4.Institut für GeowissenschaftenFriedrich-Schiller-UniversitätJenaGermany
  5. 5.Institut für UmweltgeologieTechnische Universität BraunschweigBraunschweigGermany

Personalised recommendations