Longevity of Daphnia magna males and females

Abstract

In many species, males are shorter-lived than females, and, mostly anecdotally, shorter lifespan was also attributed to Daphnia males. This does not necessarily stay in accordance with the biological roles of the sexes in Daphnia. Daphnia females maximize their fitness by maximizing the number of produced offspring, which incurs costs associated with quick attainment of large body size: metabolic costs of fast growth and increased risk of predation. In contrast, Daphnia males maximize fitness by maximizing the number of fertilized females, and seem to follow the strategy that enables them to maximize the lifetime female encounter rate, which should increase with lengthening lifespan. As arguments exist both in favour and against males living longer than females, we tested for differences in physiological lifespan of Daphnia magna males and females. Although maximum observed lifespan was always equal or longer in males than in females, no statistically significant differences were found. The results indicate that Daphnia males should not be considered short-lived anymore.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Anaya-Soto, A., S. S. S. Sarma & S. Nandini, 2003. Longevity of the freshwater anostracan Streptocephalus mackini (Crustacean: Anostraca) in relation to food (Chlorella vulgaris) concentration. Freshwater Biology 48: 432–439.

    Article  Google Scholar 

  2. Berg, L. M., S. Pálsson & M. Lascoux, 2001. Fitness and sexual response to population density in Daphnia pulex. Freshwater Biology 46: 667–677.

    Article  Google Scholar 

  3. Blanckenhorn, W. U., 2005. Behavioral causes and consequences of sexual size dimorphism. Ethology 111: 977–1016.

    Article  Google Scholar 

  4. Bohrer, R. N. & W. Lampert, 1988. Simultaneous measurement of the effect of food concentration on assimilation and respiration in Daphnia magna Straus. Functional Ecology 2: 463–471.

    Article  Google Scholar 

  5. Breukelman, J., 1932. Effect of age and sex on resistance of daphnids to mercuric chloride. Science 76: 302.

    Article  PubMed  Google Scholar 

  6. Brewer, M. C., 1998. Mating behaviours of Daphnia pulicaria, a cyclic parthenogen: comparisons with copepods. Philosophical Transactions of the Royal Society of London, Series B 353: 805–815.

    Article  Google Scholar 

  7. De Meester, L., 1996. Local genetic differentiation and adaptation in freshwater zooplankton populations: patterns and processes. Ecoscience 3: 385–399.

    Google Scholar 

  8. De Meester, L. & J. Vanoverbeke, 1999. An uncoupling of male and sexual egg production leads to reduced inbreeding in the cyclical parthenogen Daphnia. Proceedings of the Royal Society B 266: 2471–2477.

    Article  PubMed  Google Scholar 

  9. Dodson, S. I., 1989. The ecological role of chemical stimuli for the zooplankton: predator-induced morphology in Daphnia. Oecologia 78: 361–367.

    Article  Google Scholar 

  10. Euent, S., R. Menzel & C. E. W. Steinberg, 2008. Gender-specific lifespan modulation in Daphnia magna by a dissolved humic substances preparation. Annals of Environmental Science 2: 7–10.

    CAS  Google Scholar 

  11. Gems, D. & D. L. Riddle, 2000. Genetic, behavioral and environmental determinants of male longevity in Caenorhabditis elegans. Genetics 154: 1597–1610.

    CAS  PubMed  Google Scholar 

  12. Grebelnyi, S. D., 1996. Influence of parthenogenetic reproduction on the genotypic constitution and evolutionary success of populations and species. Hydrobiologia 320: 55–61.

    Article  Google Scholar 

  13. Hebert, P. D. N., 1987. Genetics of Daphnia. In Peters, R. H. & R. De Bernardi (eds), Daphnia. Instituto Italiano di Idrobiologia, Pallanza, Italy: 439–460.

    Google Scholar 

  14. Hebert, P. D. N. & R. D. Ward, 1972. Inheritance during parthenogenesis in Daphnia magna. Genetics 71: 639–642.

    CAS  PubMed  Google Scholar 

  15. Heinze, J. & A. Schrempf, 2008. Aging and reproduction in social insects – a mini-review. Gerontology 54: 160–167.

    Article  PubMed  Google Scholar 

  16. Hobaek, A. & P. Larsson, 1990. Sex determination in Daphnia magna. Ecology 71: 2255–2268.

    Article  Google Scholar 

  17. Hunt, J., R. Brooks, M. D. Jennions, M. J. Smith, C. L. Bentsen & L. F. Bussiere, 2004. High-quality male field crickets invest heavily in sexual display but die young. Nature 432: 1024–1027.

    Article  CAS  PubMed  Google Scholar 

  18. Ikuno, E., T. Matsumoto, T. Okubo, S. Itoi & H. Sugita, 2008. Difference in the sensitivity to chemical compounds between female and male neonates of Daphnia magna. Environmental Toxicology 23: 570–575.

    Article  CAS  PubMed  Google Scholar 

  19. Ingle, L., T. R. Wood & A. M. Banta, 1937. A study of longevity, growth, reproduction and heart rate in Daphnia longispina as influenced by limitations in quantity of food. Journal of Experimental Zoology 76: 325–352.

    Article  Google Scholar 

  20. Jazwinski, S. M., 1996. Longevity, genes, and aging. Science 273: 54–59.

    Article  CAS  PubMed  Google Scholar 

  21. Kawaguchi, S., L. A. Finley, S. Jarman, S. G. Candy, R. M. Ross, L. B. Quetin, V. Siegel, W. Trivelpiece, M. Naganobu & S. Nicol, 2007. Male krill grow fast and die young. Marine Ecology Progress Series 345: 199–210.

    Article  Google Scholar 

  22. Kerfoot, W. C. & C. Peterson, 1980. Predatory copepods and Bosmina: replacement cycles and further influences of predation upon prey reproduction. Ecology 61: 417–431.

    Article  Google Scholar 

  23. Kirkwood, T. B. L. & S. N. Austad, 2000. Why do we age? Nature 408: 233–238.

    Article  CAS  PubMed  Google Scholar 

  24. Kleiven, O. T., P. Larsson & A. Hobaek, 1992. Sexual reproduction in Daphnia magna requires three stimuli. Oikos 65: 197–206.

    Article  Google Scholar 

  25. Lürling, M. & W. Beekman, 2006. Growth of Daphnia magna males and females fed with the cyanobacterium Microcystis aeruginosa and the green alga Scenedesmus obliquus in different proportions. Acta hydrochimica et hydrobiologica 34: 375–382.

    Article  Google Scholar 

  26. MacArthur, J. W. & W. H. T. Baillie, 1926. Sex differences in mortality and metabolic activity in Daphnia magna. Science 64: 229–230.

    Article  PubMed  Google Scholar 

  27. MacArthur, J. W. & W. H. T. Baillie, 1929a. Metabolic activity and duration of life. I. Influence of temperature on longevity in Daphnia magna. Journal of Experimental Zoology 53: 221–242.

    Article  Google Scholar 

  28. MacArthur, J. W. & W. H. T. Baillie, 1929b. Metabolic activity and duration of life. II. Metabolic rates and their relation to longevity in Daphnia magna. Journal of Experimental Zoology 53: 243–268.

    Article  Google Scholar 

  29. Maklakov, A. A., S. J. Simpson, F. Zajitschek, M. D. Hall, J. Dessmann, et al., 2008. Sex-specific fitness effects of nutrient intake on reproduction and lifespan. Current Biology 18: 1062–1066.

    Article  CAS  PubMed  Google Scholar 

  30. Martínez-Jerónimo, F., R. Villaseiior, G. Rios & F. Espinosa, 1994. Effect of food type and concentration on the survival, longevity, and reproduction of Daphnia magna. Hydrobiologia 287: 207–214.

    Google Scholar 

  31. Metcalfe, N. B. & P. Monaghan, 2001. Compensation for a bad start: grow now, pay later? Trends in Ecology and Evolution 16: 254–260.

    Article  PubMed  Google Scholar 

  32. Moore, P. G., 1981. The life histories of the amphipods Lembos websteri Bate and Corophium bonnellii Milne Edwards in kelp holdfasts. Journal of Experimental Marine Biology and Ecology 49: 1–50.

    Article  Google Scholar 

  33. Muńoz-Mejía, G. & F. Martínez-Jerónimo, 2007. Impact of algae and their concentrations on the reproduction and longevity of cladocerans. Annales de Limnologie – International Journal of Limnology 43: 167–177.

    Google Scholar 

  34. Munro, I. G. & R. W. G. White, 1975. Comparison of the influence of temperature on the egg development and growth of Daphnia Iongispina O.F. Miiller (Crustacea: Cladocera) from two habitats in Southern England. Oecologia (Berl.) 20: 157–165.

    Article  Google Scholar 

  35. Peñalva-Arana, D. C., P. A. Moore, B. A. Feinberg, J. DeWall & J. R. Strickler, 2007. Studying Daphnia feeding behavior as a black box: a novel electrochemical approach. Hydrobiologia 594: 153–163.

    Article  Google Scholar 

  36. Pietrzak, B., M. Grzesiuk & A. Bednarska, 2010. Food quantity shapes life history and survival strategies in Daphnia magna (Cladocera). Hydrobiologia. doi:10.1007/s10750-010-0135-9.

  37. Pijanowska, J. & M. Kloc, 2004. Daphnia response to predation threat involves heat-shock proteins and the actin and tubulin cytoskeleton. Genesis 38: 81–86.

    Article  CAS  PubMed  Google Scholar 

  38. Reznick, D. N., M. J. Bryant, D. Roff, C. K. Ghalambor & D. E. Ghalambor, 2004. Effect of extrinsic mortality on the evolution of senescence in guppies. Nature 431: 1095–1099.

    Article  CAS  PubMed  Google Scholar 

  39. Siegel, V., 1987. Age and growth of Antarctic Euphausiacea (Crustacea) under natural conditions. Marine Biology 96: 483–495.

    Article  Google Scholar 

  40. Sohal, R. S., R. J. Mockett & W. C. Orr, 2002. Mechanisms of aging: an appraisal of the oxidative stress hypothesis. Free Radical Biology and Medicine 33: 575–586.

    Article  CAS  PubMed  Google Scholar 

  41. Spaak, P. & M. Boersma, 2001. The influence of fish kairomones on the induction and vertical distribution of sexual individuals of the Daphnia galeata species complex. Hydrobiologia 442: 185–193.

    Article  Google Scholar 

  42. Speakman, J. R., 2005. Body size, energy metabolism and lifespan. Journal of Experimental Biology 208: 1717–1730.

    Article  PubMed  Google Scholar 

  43. Stibor, H., 1992. Predator induced life-history shifts in a freshwater cladoceran. Oecologia 92: 162–165.

    Article  Google Scholar 

  44. Watras, C. J., 1983. Mate location by diaptomid copepods. Journal of Plankton Research 5: 417–423.

    Article  Google Scholar 

  45. Williams, G. C., 1957. Pleiotropy, natural selection and the evolution of senescence. Evolution 11: 398–411.

    Article  Google Scholar 

Download references

Acknowledgements

We want to thank the two anonymous reviewers and Joanna Pijanowska for valuable comments on the manuscript. This study was supported by Polish Ministry of Science and Higher Education grants N304 005 32/0647 and N N304 094135.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Barbara Pietrzak.

Additional information

Guest editors: M. Silva-Briano & S. S. S. Sarma / Biology of Cladocera (Crustacea): Proceedings of the VIII International Cladocera Symposium

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pietrzak, B., Bednarska, A. & Grzesiuk, M. Longevity of Daphnia magna males and females. Hydrobiologia 643, 71–75 (2010). https://doi.org/10.1007/s10750-010-0138-6

Download citation

Keywords

  • Lifespan
  • Life history
  • Males
  • Females
  • Daphnia