, 638:1 | Cite as

Cytogenetic analysis of orange-spotted grouper, Epinephelus coioides, using chromosome banding and fluorescence in situ hybridization

  • Shifeng Wang
  • Yongquan Su
  • Shaoxiong Ding
  • Yan Cai
  • Jun Wang
Primary Research Paper


The orange-spotted grouper, Epinephelus coioides, is one of the most important commercial fish species in Southeast Asia. Although it has been widely cultured in China, basic cytogenetic information on this species is limited. In this study, we used Giemsa-staining, C-banding, argyrophilic nucleolar organizer regions (Ag-NORs), and repetitive sequencing (including 5S, 18S, and (TTAGGG) n ) techniques to analyze the cytogenetics of the orange-spotted grouper. Our results showed that the karyotypic formula of the orange-spotted grouper was 2n = 2SM + 46A, NF = 50. C-banding patterns indicated that centromeric regions of all chromosomes were C-band positive except in pair no. 12. Heterochromatin was detected at the subcentromeric regions of both pair no. 5 and no. 12. In the smallest chromosome pair, no. 24, either the entire short arm or the end of the short arm was C-band positive. After Ag-NORs staining, one pair of nucleolar organizer regions was observed on the short arm of pair no. 24. FISH results showed that 5S rDNA was located at a pair of A-type chromosomes, while 18S rDNA appeared at the same location in the short arm of pair no. 24 where Ag-NORs were detected. The telomeric sequence (TTAGGG) n detected by FISH was located at both ends of each chromosome. Some of these chromosomal markers showed species-specific variations. Thus, despite the apparent karyotype stability (2n = 48), several microstructural chromosome changes must have occurred during chromosomal evolution, resulting in significant changes in the karyotype structure during the evolutionary diversification of the genus Epinephelus.


Orange-spotted grouper C-band Ag-NORs Fluorescence in situ hybridization (FISH) 



We wish to thank two anonymous reviewers for helpful comments. We would also like to thank Jay R. Rooker, Lynne Wetmore, and Jeffrey Simms for their constructive suggestions. This study was supported by research grants from National Natural Science Foundation of China (No. 40306023 and 40576064).


  1. Alam, M. A., Y. Kobayashi, H. Ryo, T. Hirai & M. Nakamura, 2008. Molecular cloning and quantitative expression of sexually dimorphic markers Dmrt1 and Foxl2 during female-to-male sex change in Epinephelus merra. General and Comparative Endocrinology 157: 75–85.Google Scholar
  2. Brum, M. J. I. & P. M. Galetti Jr., 1997. Teleostei ground plan karyotype. Journal of Comparative Biology 2: 91–102.Google Scholar
  3. Cecilia, T. D. A. & M. G. J. Pedro, 1997. Chromosomal studies in South Atlantic serranids (Pisces, Perciformes). Cytobios 89: 105–114.Google Scholar
  4. Chen, Y., S. Rong, S. Liu, H. Zhang & M. Pei, 1990. Analysis of the karyotype of Epinephelus sexfasciatus. Journal of Zhanjiang Fisheries College 2: 62–68.Google Scholar
  5. Chen, Y. M., Y. L. Su, H. Y. J. Lin, H. L. Yang & T. Y. Chen, 2006. Cloning of an orange-spotted grouper (Epinephelus coioides) Mx cDNA and characterisation of its expression in response to nodavirus. Fish & Shellfish Immunology 20: 58–71.CrossRefGoogle Scholar
  6. Chew, J. S., C. Oliveira, J. M. Wright & M. J. Dobson, 2002. Molecular and cytogenetic analysis of the telomeric (TTAGGG)n repetitive sequences in the Nile tilapia, Oreochromis niloticus (Teleostei: Cichlidae). Chromosoma 111: 45–52.CrossRefPubMedGoogle Scholar
  7. Craig, M. T., D. J. I. I. Pondella, J. C. Hafner & J. P. C. Franck, 2001. On the status of the serranid fish genus Epinephelus: evidence for paraphyly based on 16S rDNA sequences. Molecular Phylogenetics and Evolution 19:121–130.Google Scholar
  8. Craig, M. T. & P. A. Hastings, 2007. A molecular phylogeny of the groupers of the subfamily Epinephelinae (Serranidae) with a revised classification of the Epinephelini. Ichthyological Research 54: 1–17. Google Scholar
  9. Cross, I., A. Merlo, M. Manchado, C. Infante, J. P. Cañavate & L. Rebordinos, 2006. Cytogenetic characterization of the sole Solea senegalensis (Teleostei: Pleuronectiformes: Soleidae): Ag-NOR, (GATA)n, (TTAGGG)n and ribosomal genes by one-color and two-color FISH. Genetica 128: 253–259.CrossRefPubMedGoogle Scholar
  10. Ding, S. X., S. F. Wang, D. X. Wang & J. Wang, 2004. Analysis of the karyotype of Epinephalus coioides. Journal of Xiamen University (Natural Science) 43: 426–428.Google Scholar
  11. Ding, S. X., X. Zhuan, F. Guo, J. Wang, Y. Q. Su, Q. Y. Zhang & Q. F. Li, 2006. Molecular phylogenetic relationships of China Seas groupers based on cytochrome b gene fragment sequences. Science in China: Series C Life sciences 49: 235–242.CrossRefGoogle Scholar
  12. Eler, E. S., J. A. Dergam, P. C. Vênere, L. C. Paiva, G. A. Miranda & A. A. Oliveira, 2007. The karyotypes of the thorny catfishes Wertheimeria maculate Steindachner, 1877 and Hassar wilderi Kindle, 1895 (Siluriformes: Doradidae) and their relevance in doradids chromosomal evolution. Genetica 130: 99–103.CrossRefPubMedGoogle Scholar
  13. Ferro, D. A. M., D. M. Néo, O. Moreira-Filho & L. A. Bertollo, 2000. Nucleolar organizing regions, 18S and 5S rDNA in Astyanax scabripinnis (Piseces, Characidae): populations distribution and functional diversity. Genetica 110: 55–62.CrossRefPubMedGoogle Scholar
  14. Fontana, F., J. Tagliavini, L. Congiu, M. Lanfredi, M. Chicca, C. Laurente & R. Rossi, 1998. Karyotypic characterization of the great sturgeon, Huso huso, by multiple staining techniques and fluorescent in situ hybridization. Marine Biology 132: 495–501.CrossRefGoogle Scholar
  15. Fujiwara, A., S. Abe, E. Yamaha, F. Yamazaki & M. C. Yoshida, 1998. Chromosomal localization and heterochromatin association of ribosomal RNA gene loci and silver-stained nucleolar organizer regions in salmonid fishes. Chromosome Research 6: 463–471.CrossRefPubMedGoogle Scholar
  16. Fujiwara, A., M. Fujiwara, C. Nishida-Umehara, S. Abe & T. Masaoka, 2007. Characterization of Japanese flounder karyotype by chromosome bandings and fluorescence in situ hybridization with DNA markers. Genetica 131: 267–274.CrossRefPubMedGoogle Scholar
  17. Galetti, Jr. P. M., C. A. Mestriner, P. C. Venere & F. Foresti, 1991. Heterochromatin and karyotype reorganization in fish of the family Anostomidae (Characiformes). Cytogenet Cell Genet 56: 116–121.Google Scholar
  18. Galetti, P. M. Jr., C. T. Aguilar & W. F. Molina, 2000. An overview of marine fish cytogenetics. Hydrobiologia 420: 55–62.CrossRefGoogle Scholar
  19. Galetti, P. M. Jr., W. F. Molina, P. R. A. M. Affonso & C. T. Aquilar, 2006. Assessing genetic diversity of Brazilian reef fishes by chromosomal and DNA markers. Genetica 126: 161–177.CrossRefPubMedGoogle Scholar
  20. Ghigliotti, L., F. Mazzei, C. Ozouf-Costaz, C. Bonillo, R. Williams, C.-H. C. Cheng & E. Pisano, 2007. The two giant sister species of the Southern Ocean, Dissostichus eleginoides and Dissostichus mawsoni, differ in karyotype and chromosomal pattern of ribosomal RNA genes. Polar Biology 30: 625–634.CrossRefGoogle Scholar
  21. Gornung, E., C. Cordisco, A. Rossi, D. S. Innocentiis, D. Crosetti & L. Sola, 2001. Chromosomal evolution in Mugilidae: karyotype characterization of Liza saliens and comparative localization of major and minor ribosomal genes in the six Mediterranean mullets. Marine Biology 139: 55–60.CrossRefGoogle Scholar
  22. Guo, F., J. Wang, Y. Q. Su, D. X. Wang, L. N. Xu, et al., 2006. Study on the karpyotype of Epinephelus moara. Marine Sciences 8: 1–3.Google Scholar
  23. Heemstra, P. C. & J. E. Randall, 1993. Groupers of the World. FAO Species Catalogue, Rome.Google Scholar
  24. Hong, M. X. & J. H. Yang, 1988. Studies on the karyotypes of Epinephelus awoara. Journal of Xiamen University (Natural Science) 27: 714–715.Google Scholar
  25. Howell, W. M. & D. A. Black, 1980. Controlled silver-staining nucleolus organizer regions with a protective colloidal developer: a 1-step method. Experientia 36: 1014–1015.CrossRefPubMedGoogle Scholar
  26. Ijdo, J. W., R. A. Wells, A. Baldini & S. T. Reeders, 1991. Improved telomere detection using a telomere repeat probe (TTAGGG)n generated by PCR. Nucleic Acids Research 19: 4780.CrossRefPubMedGoogle Scholar
  27. Kavalco, K. F., R. Pazza, L. A. C. Bertollo & O. Moreira-Filho, 2004. Heterochromatin characterization of four fish species of the family Loricariidae (Siluriformes). Hereditas 141: 237–242.CrossRefGoogle Scholar
  28. Kavalco, K. F., R. Pazza, L. A. C. Bertollo & O. Moreira-Filho, 2005. Molecular cytogenetics of Oligosarcus hepsetus (Teleostei, Characiformes) from two Brazilian locations. Genetica 124: 85–91.CrossRefPubMedGoogle Scholar
  29. King, M., 1993. Species Evolution: The Role of Chromosomes Change. Cambridge University Press, Cambridge.Google Scholar
  30. Levan, A., K. Fredga & A. Sandberg, 1964. Nomenclature for centromeric position on chromosomes. Hereditas 52: 201–220.CrossRefGoogle Scholar
  31. Li, X. Q. & Y. D. Peng, 1994. Studies on karyotype of Epinephelus Fasciatomaculatus and Epinephelus fasciatus. Journal of Zhanjiang Fisheries College 14: 22–26.Google Scholar
  32. Li, N. Q., J. J. Bai, S. Q. Wu, H. H. Lao, C. B. Shi, H. J. Pan, X. Ye & Q. Jian, 2005. Molecular classification of three kinds of pathogenic Vibrios in orange-spotted grouper, Epinephelus coioides. Journal of Fisheries of China 29: 356–361.Google Scholar
  33. Liao, J. Q., S. W. Yin, G. H. Chen, H. Huang, C. G. Lei & T. T. Lou, 2006. The karyotype of grouper Epinephelus fuscoguttatus. Fisheries science 25: 567–569.Google Scholar
  34. Lou, Z., Y. J. Liu, K. S. Mai, L. X. Tian, D. H. Liu, X. Y. Tan & H. Z. Lin, 2005. Effect of dietary lipid level on growth performance, feed utilization and body composition of grouper Epinephelus coioides juveniles fed isonitrogenous diets in floating netcages. Aquaculture International 13: 257–269.CrossRefGoogle Scholar
  35. Maggio T., F. Andaloro, F. Hemida & M. Arculeo, 2005. A molecular analysis of some Eastern Atlantic grouper from the Epinephelus and Mycteroperca genus. Journal of experimental marine biology and ecology 321: 83–92.Google Scholar
  36. Mantovani, M., L. D. S. Abel, C. A. Mestriner & O. Moreira-Filho, 2000. Accentuated polymorphism of heterochromatin and nucleolar organizer regions in Astyanax scabripinnis (Pisces, Characidae): tools for understanding karyotypic evolution. Genetica 109: 161–168.CrossRefPubMedGoogle Scholar
  37. Martinez, G., G. Thode, M. C. Alvarez & J. R. Lopez, 1989. C-banding and Ag-NOR reveal a certain heterogeneity among karyotypes of serranids (Perciformes). Cytobios 58: 53–60.Google Scholar
  38. Medrano, L., G. Bernardi, J. Couturier, B. Dutrillaux & G. Bernardi, 1988. Chromosome banding and genome compartimentalization in fishes. Chromosoma 96: 178–183.CrossRefGoogle Scholar
  39. Merlo, A., I. Cross, J. L. Palazón, C. Sarasquete & L. Rebordinos, 2007. Chromosomal mapping of the major and minor ribosomal genes, (GATA)n and (TTAGGG)n by one-color and double-color FISH in the toadfish Halobatrachus didactylus (Teleostei Batrachoididae). Genetica 131: 195–200.CrossRefPubMedGoogle Scholar
  40. Mertins, C. Jr., & P. M. Galetti, 1999. Chromosomal localization of 5S rDNA genes in Leporinus fish (Anostomidae, Characiformes). Chromosome Research 7: 363–367.CrossRefGoogle Scholar
  41. Molina, W. F., F. A. Maia-Lima & P. R. A. M. Affonso, 2002. Divergence between karyotypical pattern and speciation events in Serranidae fish (Perciformes). Caryologia 55: 299–305.Google Scholar
  42. Natarajan, R. & K. Subrahmanyan, 1974. A karyotype study of some teleosts from Portonovo waters. Proceedings of the Indian Academy of Sciences 79: 173–196.Google Scholar
  43. Nirchio, M., J. I. Gaviria, C. Oliveira, I. A. Ferreira & C. Martins, 2007. Cytogenetic analysis of three species of the genus Haemulon (Teleostei: Haemulinae) from Margarita Island, Venezuela. Genetica 131: 135–140.CrossRefPubMedGoogle Scholar
  44. Ohno, S., 1974. Protochordata, Cyclostomata and Pisces. In: B. John (ed.), Animal Cytogenetics, vol. 4. Getrüder Borntaerger, Berlin.Google Scholar
  45. Phillips, R. B. & K. M. Reed, 1996. Application of fluorescence in situ hybridization (FISH) techniques to fish genetics: a review. Aquaculture 140: 197–216.CrossRefGoogle Scholar
  46. Pisano, E. & C. Ozouf-Costaz, 2003. Cytogenetics and evolution in extreme environment: the case of Antarctic Fishes. In Val, A. L. & B. G. Kapoor (eds), Fish Adaptations. Science Publishers Inc., Enfield: 309–330.Google Scholar
  47. Ren, X. H., J. X. Cui & Q. X. Yu, 1996. Chromosomal nucleolar organizer regions differentiations in chinese cyprinid fishes. Journal of Wuhan University (Natural Science Edition) 42: 475–480.Google Scholar
  48. Rodríguez-daga, R., A. Amores & G. Thode, 1993. Karyotype and nucleolus organizer regions in Epinephelus caninus (Pisces, Serranidae). Caryologia 46: 71–76.Google Scholar
  49. Sambrook, J., E. F. Fritsch & T. Mantiatis, 1989. Molecular Cloning A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, New York: 672–683, 955.Google Scholar
  50. Sawada, Y., K. Kato, T. Okada, M. Kurata, Y. Mukai, S. Miyashita, O. Murata & H. Kumai, 2007. Growth and morphological development of larval and juvenile epinephelus bruneus (perciformes: Serranidae). Ichthyological Research 46: 245–257.Google Scholar
  51. Sola, L., S. De Innocentiis, E. Gornung, S. Papalia, A. R. Rossi, G. Marino, P. De Marco & S. Cataudella, 2000. Cytogenetic analysis of Epinephelus marginatus (Pisces: Serranidae), with the chromosome localization of the 18S and 5S rRNA genes and of the (TTAGGG)n telomeric sequence. Marine Biology 137: 47–51.CrossRefGoogle Scholar
  52. Sumner, A. T., 1972. A simple technique for demonstrating heterochromatin. Experimental Cell Research 75: 304–306.CrossRefPubMedGoogle Scholar
  53. Varela, E. S., C. R. Beasley, H. Schneider, I. Sampaio, N. D. S. Marques-Silva & C. H. Tagliaro, 2007. Molecular phylogeny of mangrove oysters (Crassostrea) from Brazil. Journal of Molluscan Studies 73: 229–234.Google Scholar
  54. Vitturi, R., R. Catalano & D. Colombera, 1993. Chromosome analysis of Bothus podas (Pisces, Pleuronectiformes) from the Mediterranean Sea. Journal of Fish Biology 43: 221–227.Google Scholar
  55. Wang, H. S., Q. S. Fang & L. Y. Zhen, 2002. Effects of salinity on hatching rates and survival activity index of the larvae of Epinephelus akaara. Journal of Fisheries of China 26: 344–350.Google Scholar
  56. Wang, Y. X., H. D. Wang, H. F. Zhang & Y. Z. Liu-Fu, 2004. Karyotypes of Epinephelus coioides and Epinephelus akaara. Journal of Zhanjiang Ocean University 24: 4–8.Google Scholar
  57. Wang, S. F., J. Y. Du, J. Wang & S. X. Ding, 2007. Identification of Epinephelus malabaricus and Epinephelus coilides using DNA markers. Acta oceanologica sinica 26: 122–129.Google Scholar
  58. White, T. J., T. Bruns, S. Lee & J. Taylor, 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In Innis, M. A., D. H. Gelfand & J. J. Sninsky (eds), PCR Protocols: A Guide to Methods and Applications. Academic Press, New York: 315–322.Google Scholar
  59. Woznicki, P., M. Jankun & M. Luczynski, 1998. Chromosome polymorphism in Salmo trutta morpha lacustris from Poland, Wdzydze Lake population: variation in the short arm length of chromosome eleven. Aquatic sciences 60: 367–375.Google Scholar
  60. Zheng, L., C. W. Liu & C. L. Li, 2005. Studies on the karyotype of 4 groupers. Marine Science 29: 51–55.Google Scholar
  61. Zou, J. X., Q. X. Yu & F. Zhou, 2005. The karyotypes C-bands patterns and Ag-NORs of Epinephelus malabaricus. Journal of Fisheries of China 29: 33–37.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Shifeng Wang
    • 1
    • 2
  • Yongquan Su
    • 2
  • Shaoxiong Ding
    • 2
  • Yan Cai
    • 1
  • Jun Wang
    • 2
  1. 1.Key Laboratory of Tropic Biological Resources, MOEHainan UniversityHaikouChina
  2. 2.College of Oceanography and Environment ScienceXiamen UniversityXiamenChina

Personalised recommendations