Skip to main content

Advertisement

Log in

A morphometrically based method for predicting water layer boundaries in meromictic lakes

  • Primary research paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Many general mass-balance models that simulate processes in one or two water layers have been successfully constructed, tested and used to predict effects from remediating lake pollution and other environmental disturbances. However, these models are poorly suited for meromictic lakes which consist of yet another water layer. In order to determine a cross-systems based algorithm for the depth of the boundary between the two lowest layers (D crit2; in m), data from 24 three-layer lakes were analysed, and this depth could be predicted from the maximum depth and the lake surface area. The resulting model was tested with good results against independent data from 6 lakes which were not used for model development. Furthermore, D crit2 was predicted at a considerably lower depth than the theoretical wave base (a previously defined functional separator between the two top layers) in 110 out of 113 meromictic lakes. This indicates that the equation for D crit2 estimated in this study may be used for developing general mass-balance models for a large number of lakes which contain three stable water layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aldenberg, T., J. H. Janse & P. R. G. Kramer, 1995. Fitting the dynamic lake model PCLake to a multi-lake survey through Bayesian statistics. Ecological Modelling 78: 83–99.

    Article  CAS  Google Scholar 

  • Blenckner, T., 2008. Models as tools for understanding past, recent and future changes in large lakes. Hydrobiologia 599: 177–182.

    Article  CAS  Google Scholar 

  • Boehrer, B. & M. Schultze, 2008. Stratification of lakes. Reviews of Geophysics 46: RG2005.

    Article  CAS  Google Scholar 

  • Bossard, P., S. Gammeter, C. Lehmann, F. Schanz, R. Bachofen, H.-R. Bürgi, D. Steiner & U. Zimmermann, 2001. Limnological description of the Lakes Zürich, Lucerne, and Cadagno. Aquatic Sciences 63: 225–249.

    Article  CAS  Google Scholar 

  • Brezonik, P. L. & J. L. Fox, 1974. The limnology of selected Guatemalan lakes. Hydrobiologia 45: 467–487.

    CAS  Google Scholar 

  • Bryhn, A. C. & L. Håkanson, 2007. A comparison of predictive phosphorus load-concentration models for lakes. Ecosystems 10: 1084–1099.

    Article  CAS  Google Scholar 

  • Burton, H. R., 1980. Methane in a saline Antarctic lake. In Trudinger, P. A. & M. R. Walter (eds), Biogeochemistry of Ancient and Modern Environments. Proceedings of the Fourth International Symposium on Environmental Biogeochemistry (ISEB). Australian Academy of Science, Canberra: 243–251.

    Google Scholar 

  • Casamayor, E. O., H. Schafer, L. Baneras, C. Pedros-Alio & G. Muyzer, 2000. Identification of and spatio-temporal differences between microbial assemblages from two neighboring sulfurous lakes: Comparison by microscopy and denaturing gradient gel electrophoresis. Applied and Environmental Microbiology 66: 499–508.

    Article  CAS  PubMed  Google Scholar 

  • Fry, B., 1986. Sources of carbon and sulfur nutrition for consumers in three meromictic lakes of New York State. Limnology and Oceanography 31: 79–88.

    Article  CAS  PubMed  Google Scholar 

  • Goldman, C. R., D. T. Mason & J. E. Hobbie, 1967. Two Antarctic desert lakes. Limnology and Oceanography 12: 295–310.

    Google Scholar 

  • Hakala, A., 2004. Meromixis as a part of lake evolution: Observations and a revised classification of true meromictic lakes in Finland. Boreal Environment Research 9: 37–53.

    CAS  Google Scholar 

  • Hakala, A., 2005. Paleoenvironmental and paleoclimatic studies on the sediments of Lake Vähä-Pitkusta and observations of meromixis. Ph.D. thesis, extended summary. University of Helsinki, Helsinki.

  • Håkanson, L., 2006. Suspended particulate matter in lakes, rivers, and marine systems. The Blackburn Press, New Jersey.

    Google Scholar 

  • Håkanson, L. & A. C. Bryhn, 2008. A dynamic mass-balance model for phosphorus in lakes with a focus on criteria for applicability and boundary conditions. Water, Air, & Soil Pollution 187: 119–147.

    Article  CAS  Google Scholar 

  • Håkanson, L., T. Blenckner & J. M. Malmaeus, 2004. New, general methods to define the depth separating surface water from deep water, outflow and internal loading for mass-balance models for lakes. Ecological Modelling 175: 339–352.

    Article  CAS  Google Scholar 

  • Hongve, D., 1980. Chemical stratification and stability of meromictic lakes in the Upper Romerike district. Schweizerische Zeitschrift für Hydrologie 42: 171–195.

    Article  CAS  Google Scholar 

  • Jacquet, S., J.-F. Briand, C. Leboulanger, C. Avois-Jacquet, L. Oberhaus, B. Tassin, B. Vinçon-Leite, G. Paolini, J.-C. Druart, O. Anneville & J.-F. Humbert, 2005. The proliferation of the toxic cyanobacterium Planktothrix rubescens following restoration of the largest natural French lake (Lac du Bourget). Harmful Algae 4: 651–672.

    Article  Google Scholar 

  • Ouellet, M., M. Dickman, M. Bisson & P. Page, 1989. Physico-chemical characteristics and origin of hypersaline meromictic Lake Garrow in the Canadian High Arctic. Hydrobiologia 172: 215–234.

    Article  CAS  Google Scholar 

  • Rodrigo, M. A., M. R. Miracle & E. Vicente, 2001. The meromictic Lake La Cruz (Central Spain): Patterns of stratification. Aquatic Sciences 63: 406–416.

    Article  Google Scholar 

  • Sherstyankin, P. P., S. P. Alekseev, A. M. Abramov, K. G. Stavrov, M. De Batist, R. Hus, M. Canals & J. L. Casamor, 2006. Computer-based bathymetric map of Lake Baikal. Doklady Earth Sciences 408: 564–569.

    Article  CAS  Google Scholar 

  • Straškrábová, V., L. R. Izmest’yeva, E. A. Maksimova, S. Fietz, J. Nedoma, J. Borovec, G. I. Kobanovac, E. V. Shchetinina & E. V. Pislegina, 2005. Primary production and microbial activity in the euphotic zone of Lake Baikal (Southern Basin) during late winter. Global and Planetary Change 46: 57–73.

    Article  Google Scholar 

  • Taguchi, K. & K. Nakata, 1998. Analysis of water quality in Lake Hamana using a coupled physical and biochemical model. Journal of Marine Systems 16: 107–132.

    Article  Google Scholar 

  • Vinçon-Leite, B., B. Tassin & J.-C. Druart, 2002. Phytoplankton variability in Lake Bourget: Phytoplankton dynamics and meteorology. Lakes & Reservoirs: Research and Management 7: 93–102.

    Article  Google Scholar 

  • Walker, K. F. & G. E. Likens, 1975. Meromixis and a reconsidered typology of lake circulation patterns. Internationale Vereinigung für Theoretische und Angewandte Limnologie: Verhandlungen 19: 442–458.

    Google Scholar 

  • Wetzel, R. G., 2001. Limnology, 3rd ed. Academic Press, London.

    Google Scholar 

Download references

Acknowledgements

The author is very grateful to the editorial board of Hydrobiologia and two anonymous reviewers for improving earlier versions of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas C. Bryhn.

Additional information

Handling editor: Luis Mauricio Bini

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bryhn, A.C. A morphometrically based method for predicting water layer boundaries in meromictic lakes. Hydrobiologia 636, 413–419 (2009). https://doi.org/10.1007/s10750-009-9970-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-009-9970-y

Keywords

Navigation