, Volume 636, Issue 1, pp 379–392 | Cite as

Relevance of abiotic criteria used in German lake typology for macroinvertebrate fauna

  • Armin Zenker
  • Beate Baier
Primary research paper


For lake characterisation, top-down typologies are mostly used throughout Europe, including type criteria such as climate, lake area, catchment geology and conductivity. In Germany, a lake typology was applied comprising ecoregion, calcium concentration, Schindler’s ratio, stratification type and residence time. However, the relevance of these criteria for the macroinvertebrate fauna has not been conclusively demonstrated till now. Benthic invertebrate community data and related environmental parameters of pristine or near-pristine lakes in Germany were analysed by multivariate analysis techniques to elucidate which environmental parameters are reflected by invertebrate composition. Moreover, benthic invertebrate data were transformed to metrics expressing ecological attributes and species richness (summarising functional composition, diversity and sensitivity measures). Multivariate statistics were used to test whether information relevant to ordination was lost and whether variation decreases using metrics which combine data with ecological attributes. Analysis of lake-type criteria revealed that ecoregions and prevailing substrates were characterized by different taxonomic compositions of macroinvertebrates. In addition, a relationship was found between community composition and lake size. Creating a novel bottom-up lake typology based on ecoregions, lake size and prevailing substrate gives better separation of distinct macroinvertebrate communities and a higher level of homogeneity within groups compared to top-down typology or single environmental parameters alone, both on species and metrics data. Despite some data variation due to methodological differences (e.g. different sampling and sorting techniques) and interannual and seasonal variation in the data set, NMDS ordination presented well-separated groups of bottom-up lake types. Lake types were more precisely separated by species data than by metric data in both top-down and bottom-up typology. However, as information loss from species lists to calculated metrics is marginal, type-specific benthic invertebrate assemblages are reflected both on the species level and on the metric level. Species and metric data are both suitable for data ordination, while single environmental parameters affecting macroinvertebrate composition can best be obtained using metrics.


Bottom-up typology Ecological lake classification Invertebrate composition Metrics Multivariate analysis 



We thank Johannes Steidle for his helpful comments on the manuscript. Data collection was partly supported within a project for lake assessment using macroinvertebrate community structure by the Bund/Länder-Arbeitsgemeinschaft Wasser (LAWA). The submitted version of the manuscript was considerably improved, thanks to the advice of two unknown referees.


  1. Alf, A., U. Braukmann, M. Marten & H. Vobis, 1992. Biologisch-ökologische Gewässeruntersuchung–Arbeitsanleitung. Handbuch Wasser 2, Landesanstalt für Umweltschutz (Hrsg.). Karlsruhe, Loseblattsammlung.Google Scholar
  2. Ali, A., J. Frouz & R. J. Lobinske, 2002. Spatio-temporal effects of selected physio-chemical variables of water, algae and sediment chemistry on the larval community of nuisance Chironomidae (Diptera) in a natural and a man-made lake in central Florida. Hydrobiologia 470: 181–193.CrossRefGoogle Scholar
  3. Allen, A. P., T. R. Whittier, D. P. Larsen, P. R. Kaufmann, R. J. O’Connor, R. M. Hughes, R. S. Stemberger, S. S. Dixit, R. O. Brinkhurst, A. T. Herlihy & S. G. Paulsen, 1999. Concordance of taxonomic composition patterns across multiple lake assemblages: effects of scale, body size, and land use. Canadian Journal of Fisheries and Aquatic Sciences 65: 2029–2040.CrossRefGoogle Scholar
  4. Allott, N., G. Free, K. Irvine, P. Mills, T. E. Mullins, J. J. Bowman, W. S. T. Champ, K. J. Clabby & M. L. McGarrigle, 1998. Land use and aquatic systems in the Republic of Ireland. In Giller, P. S. (ed.), Studies in Irish Limnology. Marine Institute, Dublin: 1–18.Google Scholar
  5. AQEM consortium, 2002. Manual for the application of the AQEM method. A comprehensive method to assess European streams using benthic macroinvertebrates, developed for the purpose of the Water Framework Directive. Version 1.0, February 2002. Fortführung im EU-Projekt Euro-Limpacs (
  6. Baier, B. & A. Zenker, 2005. Bewertungsverfahren für Makrozoobenthos in stehenden Gewässern. Limnologie aktuell 11: 121–136.Google Scholar
  7. Barton, D. R., 1988. Distribution of some common invertebrates in nearshore Lake Erie, with emphasis on depth and type of substratum. Journal of Great Lakes Research 14: 34–43.CrossRefGoogle Scholar
  8. Beaty, S. R., K. Fotino & A. Hershey, 2006. Distribution and growth of benthic macroinvertebrates among different patch types of the littoral zones of two arctic lakes. Freshwater Biology 51: 2347–2361.CrossRefGoogle Scholar
  9. Blocksom, K. A., J. P. Kurtenbach, D. J. Klemm, F. A. Fulk & S. M. Cormier, 2002. Development and evaluation of the lake macroinvertebrate integrity index (LMI) for New Jersey lakes and reservoirs. Environmental Monitoring and Assessment 77: 311–333.CrossRefPubMedGoogle Scholar
  10. Böhmer, J., C. Rawer-Jost & A. Zenker, 2004. Multimetric assessment of data provided by water managers from Germany: assessment of several different types of stressors with macrozoobenthos communities. Hydrobiologia 516: 215–228.CrossRefGoogle Scholar
  11. Brodersen, K. P., P. C. Dall & C. Lindegaard, 1998. The fauna in the upper stony littoral of Danish lakes: macroinvertebrates as trophic indicators. Freshwater Biology 39: 577–592.CrossRefGoogle Scholar
  12. Clarke, K. R., 1993. Non-parametric multivariate analysis of changes in community structure. Australian Journal of Ecology 18: 117–143.CrossRefGoogle Scholar
  13. Clarke, K. R. & R. M. Warwick, 2001. Change in marine communities: an approach to statistical analysis and interpretation, 2nd ed. PRIMER-E, Plymouth, UK.Google Scholar
  14. Collier, K. J., 2008. Temporal patterns in the stability, persistence and condition of stream macroinvertebrate communities: relationships with catchment land-use and regional climate. Freshwater Biology 53: 603–616.CrossRefGoogle Scholar
  15. Declerck, S., J. Vandekerkhove, L. Johansson, K. Muylaert, J. M. Conde-Porcuna, K. Van, C. der Gucht, T. Perez-Martinez, K. Lauridsen, G. Schwenk, W. Zwart, J. Rommens, E. Lopez-Ramos, W. Jeppesen, L. Vyverman, L. Brendonck & L. De Meester, 2005. Multi-group biodiversity in shallow lakes along gradients of phosphorus and water plant cover. Ecology 86: 1905–1915.CrossRefGoogle Scholar
  16. Dinsmore, W. P., G. J. Scrimgeour & E. E. Prepas, 1999. Empirical relationships between profundal macroinvertebrate biomass and environmental variables in boreal lakes of Alberta, Canada. Freshwater Biology 41: 91–100.CrossRefGoogle Scholar
  17. Füreder, L., R. Ettinger, A. Boggero, B. Thaler & H. Thies, 2006. Macroinvertebrate diversity in Alpine lakes: effects of altitude and catchment properties. Hydrobiologia 562: 123–144.CrossRefGoogle Scholar
  18. Garcia-Criado, F. & C. Trigal, 2005. Comparison of several techniques for sampling macroinvertebrates in different habitats of a North Iberian pond. Hydrobiologia 545: 103–115.CrossRefGoogle Scholar
  19. Gomez Gesteira, J. L., J. C. Dauvin & M. Salvande Fraga, 2003. Taxonomic level for assessing oil spill effects on soft-bottom sublittoral benthic communities. Marine Pollution Bulletin 46: 562–572.CrossRefPubMedGoogle Scholar
  20. Haase, P. & A. Sundermann, 2004. Standardisierung der Erfassungs- und Auswertungsmethoden von Makrozoobenthosuntersuchungen in Fliessgewässern. Report for the Länderarbeitsgemeinschaft Wasser (www.fliessgewä
  21. Hale, P. & B. Rippey, 2002. The ecological assessment of lakes in Nothern Ireland. ThemaNord 655: 57–64.Google Scholar
  22. Hämäläinen, H., H. Luotonen, E. Koskenniemi & P. Liljaniemi, 2003. Inter-annual variation in macroinvertebrate communities in a shallow forest lake in eastern Finland during 1990–2001. Hydrobiologia 506: 389–397.CrossRefGoogle Scholar
  23. Heatherly, T., M. R. Whiles, D. Knuth & J. E. Garvey, 2005. Diversity and community of littoral zone macroinvertebrates in Southern Illinois reclaimed surface mine lakes. American Midland Naturalist 154: 67–77.CrossRefGoogle Scholar
  24. Heino, J., 2000. Lentic macroinvertebrate assemblages structure along gradients in spatial heterogeneity, habitat size, and water chemistry. Hydrobiologia 418: 229–242.CrossRefGoogle Scholar
  25. Hering, D., C. Meier, C. Rawer-Jost, C. K. Feld, R. Biss, A. Zenker, A. Sundermann, S. Lohse & J. Böhmer, 2004. Assessing streams in Germany with benthic invertebrates: selection of candidate metrics. Limnologica - Ecology and Management of Inland Waters 34: 398–415.CrossRefGoogle Scholar
  26. Hrabik, T. R., B. K. Greenfield, D. B. Lewis, A. I. Pollard, K. A. Wilson & T. K. Kratz, 2005. Landscape-scale variation in taxonomic diversity in four groups of aquatic organisms: the influence of physical, chemical, and biological properties. Ecosystems 8: 301–317.CrossRefGoogle Scholar
  27. Illies, J., 1978. Limnofauna Europaea. Gustav Fischer Verlag, Stuttgart.Google Scholar
  28. Johnson, R. K., 1998. Spatiotemporal variability of temperate lake macroinvertebrate communities: detection of impact. Ecological Applications 8: 61–70.CrossRefGoogle Scholar
  29. Johnson, R. K., 2003. Development of a prediction system for lake stony-bottom littoral macroinvertebrate communities. Archiv für Hydrobiologie 158: 517–570.CrossRefGoogle Scholar
  30. Johnson, R. K. & W. Goedkoop, 2002. Littoral macroinvertebrate communities: spatial scale and ecological relationships. Freshwater Biology 47: 1840–1854.CrossRefGoogle Scholar
  31. Karr, J. R. & E. W. Chu, 1999. Restoring life in running waters: better biological monitoring. Island Press, Washington, DC.Google Scholar
  32. Khan, S. A., 2006. Is species level identification essential for environmental impact studies? Curr Sci 91: 29–34.Google Scholar
  33. Kolada, A., H. Soszka, D. Cydzik & M. Golub, 2005. Abiotic typology of Polish lakes. Limnologica 35: 145–150.Google Scholar
  34. Lafrancois, B. M., D. M. Carlisle, K. R. Nydick, B. M. Johnson & J. S. Baron, 2003. Environmental characteristics and benthic invertebrate assemblages in Colarado mountain lakes. Western North American Naturalist 63: 137–154.Google Scholar
  35. Lindegaard, C., 1992. Zoobenthos ecology of Thingvallavatn: vertical distribution, abundance, population dynamics and production. Oikos 4: 257–304.CrossRefGoogle Scholar
  36. Mathes, J., G. Plambeck & J. Schaumburg, 2005. Die Typisierung der Seen in Deutschland zur Umsetzung der E.G-Wasserrahmenrichtlinie. Limnologie Aktuell 11: 28–36.Google Scholar
  37. McCune, B. & J. B. Grace, 2002. Analysis of Ecological Communities. MjM Software Design, Gleneden Beach, OR.Google Scholar
  38. McCune, B. & M. J. Mefford, 1999. PC-ORD. Multivariate Analysis of Ecological Data, Version 4. MjM Software Design, Gleneden Beach, OR.Google Scholar
  39. McGarigal, S., S. Cushman & S. Stafford, 2000. Multivariate Statistics for Wildlife and Ecology Research. Springer Verlag Publishers, New York, USA.Google Scholar
  40. Menetrey, N., L. Sager, B. Oertli & J. B. Lachavanne, 2005. Looking for metrics to assess the trophic state of ponds. Macroinvertebrates and amphibians. Aquatic Conservation: Marine and Freshwater Ecosystems 15: 653–664.CrossRefGoogle Scholar
  41. Mielke, P. W. Jr., 1984. Meteorological applications of permutation techniques based on distance functions. In Krishnaiah, P. R. & P. K. Sen (eds), Handbook of Statistics, Vol. 4. Elsevier Science Publishers, Amsterdam: 813–830.Google Scholar
  42. Moog, O., A. Schmidt-Kloiber, T. Ofenböck & J. Gerritsen, 2004. Does the ecoregion approach support the typological demands of the EU ‘Water Framework Directive’? Hydrobiologia 516: 21–33.CrossRefGoogle Scholar
  43. Moss, B., D. Stephen, C. Alvarez, E. Becares, W. van de Bund, S. E. Collings, E. van Donk, E. de Eyto, T. Feldmann, C. Fernández-Aláez, M. Fernández-Aláez, R. J. M. Franken, F. Garcìa-Criado, E. M. Gross, M. Gyllström, L. A. Hansson, K. Irvine, A. Järvalt, J. P. Jensen, E. Jeppesen, T. Kairesalo, R. Kornijow, T. Krause, H. Künnap, A. Laas, E. Lille, B. Lorens, H. Luup, M. R. Miracle, P. Nõges, T. Nõges, M. Nykänen, I. Ott, W. Peczula, E. T. H. M. Peeters, G. Phillips, S. Romo, V. Russell, J. Salujõe, M. Scheffer, K. Siewertsen, H. Smal, C. Tesch, H. Timm, L. Tuvikene, I. Tonno, T. Virro, E. Vicente & D. Wilson, 2003. The determination of ecological status in shallow lakes—a tested system (ECOFRAME) for implementation of the European Water Framework Directive. Aquatic Conservation: Marine and Freshwater Ecosystems 13: 507–549.CrossRefGoogle Scholar
  44. Muxika, I., A. Borja & J. Bald, 2007. Using historical data, expert judgement and multivariate analysis in assessing reference conditions and benthic ecological status, according to the European Water Framework Directive. Marine Pollution Bulletin 55: 16–29.CrossRefPubMedGoogle Scholar
  45. Nahmani, J., P. Lavelle & J. P. Rossi, 2006. Does changing the taxonomical resolution alter the value of soil macroinvertebrates as bioindicators of metal pollution? Soil Biology and Biochemistry 38: 385–396.Google Scholar
  46. Nykänen, M., T. Kairesalo, S. Mäkelä, E. Huitu, P. Ala-Opas & J. Mannio, 2005. A typology and classification system for Finnish lakes: applicability of the ECOFRAME scheme. Boreal Environmental Research 10: 159–179.Google Scholar
  47. Rennie, M. D. & L. J. Jackson, 2005. The influence of habitat complexity on littoral invertebrate distributions: patterns differ in shallow prairie lakes with and without fish. Canadian Journal of Fisheries and Aquatic Science 62: 2088–2099.CrossRefGoogle Scholar
  48. Resh, D. J. & T. C. Unzicker, 1975. Water quality monitoring and aquatic organisms: importance of species identification. Journal of Water Pollution Control Federation 47: 9–19.Google Scholar
  49. Rippey, B., S. Doe, Y. McElaney, M. Neale, P. Hale & V. Crone, 2002. Establishing reference conditions for phytoplankton, macrophytes and littoral macroinvertebrates in lakes. ThemaNord 566: 82–85.Google Scholar
  50. Robinson, C. T. & C. Jolidon, 2005. Leaf breakdown and the ecosystem functioning of alpine streams. Journal of the North American Benthological Society 24: 495–507.Google Scholar
  51. Solimini, A. G., M. Bazzanti, A. Ruggiero & G. Carchini, 2008. Developing a multimetric index of ecological integrity based on macroinvertebrates of mountain ponds in central Italy. Hydrobiologia 597: 109–123.CrossRefGoogle Scholar
  52. Stendera, S. E. S. & R. K. Johnson, 2005. Additive partitioning of aquatic invertebrate species diversity across multiple spatial scales. Freshwater Biology 50: 1360–1375.CrossRefGoogle Scholar
  53. Stoffels, R. J., K. R. Clarke & G. P. Closs, 2005. Spatial scale and benthic community organisation in the littoral zones of large oligotrophic lakes: potential for cross-scale interactions. Freshwater Biology 50: 1131–1145.CrossRefGoogle Scholar
  54. Studinski, J. M. & S. A. Grubbs, 2007. Environmental factors affecting the distribution of aquatic invertebrates in temporary ponds in Mammoth Cave National Park, Kentucky, USA. Hydrobiologia 575: 211–220.CrossRefGoogle Scholar
  55. Sundermann, A., S. Lohse, L. A. Beck & P. Haase, 2007. Key to the larval stages of aquatic true flies (Diptera), based on the operational taxa list for running waters in Germany. Annales de Limnologie - International Journal of Limnology 43: 61–74.CrossRefGoogle Scholar
  56. Tolonen, K. T., H. Hämäläinen, I. J. Holopainen & J. Karjalainen, 2001. Influences of habitat type and environmental variables on littoral macroinvertebrate communities in a large lake system. Archiv für Hydrobiologie 152: 39–67.Google Scholar
  57. Trigal, C., F. Garcìa-Criado & C. Fernández-Aláez, 2006. Among-habitat and temporal variability of selected based metrics in a Mediterranean shallow lake (NW Spain). Hydrobiologia 563: 371–384.CrossRefGoogle Scholar
  58. Trigal, C., F. Garcìa-Criado & C. Fernández-Aláez, 2009. Towards a multimetric index for ecological assessment of Mediterranean flatland ponds: the use of macroinvertebrates as bioindicators. Hydrobiologia 618: 109–123.CrossRefGoogle Scholar
  59. Van de Meutter, F., R. Stoks & L. De Meester, 2005. The effect of turbidity state and microhabitat on macroinvertebrate assemblages: a pilot study of six shallow lakes. Hydrobiologia 542: 379–390.Google Scholar
  60. Waite, I. R., A. T. Herlihy, D. P. Larsen, N. S. Urquhart & D. J. Klemm, 2004. The effects of macroinvertebrate taxonomic resolution in large landscape bioassessments: an example from the Mid-Atlantic Highlands, USA. Freshwater Biology 49: 474–489.CrossRefGoogle Scholar
  61. White, J., 2001. The potential use of littoral macroinvertebrates in the assessment of lake water quality. Internationalen Vereinigung für Theoretische und Angewandte Limnologie, Verhandlungen 27: 3527–3532.Google Scholar
  62. White, J. & K. Irvine, 2003. The use of littoral mesohabitats and their macroinvertebrate assemblages in the ecological assessment of lakes. Aquatic Conservation Marine and Freshwater Ecosystems 13: 331–351.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Institute of Ecopreneurship, School of Life SciencesUniversity of Applied Sciences Northwestern Switzerland (FHNW)MuttenzSwitzerland
  2. 2.Department of Animal Ecology, Institute of ZoologyUniversity of HohenheimStuttgartGermany
  3. 3.Department of Water ResearchInstitute of Hygiene and EnvironmentHamburgGermany

Personalised recommendations