, Volume 635, Issue 1, pp 339–350 | Cite as

Can hydrologic management practices of rice fields contribute to macroinvertebrate conservation in southern Brazil wetlands?

  • Cristina Stenert
  • Roberta C. Bacca
  • Leonardo Maltchik
  • Odete Rocha
Primary research paper


The expansion of rice fields is one of the main human activities responsible for the decline of natural wetlands throughout the world. However, rice fields have been recognized as having considerable potential value for many aquatic species. In this sense, an important question from the point of view of biodiversity conservation is the adequacy of these agricultural wetlands as an integrated managed landscape that contributes to maintain a rich biodiversity. The two main questions of this study were: (1) Do richness, density, and composition of macroinvertebrates differ in rice fields with different management practices (flooded and dry)?; and, (2) Do richness, density and composition of macroinvertebrates change in rice fields over the rice cultivating phases? Six collections were carried out in six rice fields with different management practices after cultivation (three dry and three flooded during the fallow phase). The macroinvertebrates were sampled using a corer (7.5-cm diameter) inserted 10 cm into the substratum of the rice fields. We recorded 6,425 macroinvertebrates, comprising 71 macroinvertebrate taxa. Macroinvertebrate richness and density varied over the rice cultivating cycle. The different management practices adopted after cultivation did not influence the macroinvertebrate richness and density; however, they influenced composition. Thus, the mosaic created by the variation of flooded and dry rice fields would provide the setting for a greater number of taxa within the agricultural landscape. The difference in taxa composition between flooded and dry rice fields is an interesting result in terms of biodiversity conservation. Rice producers could maintain part of their agricultural land flooded during the fallow phase. These management practices adopted could be an important strategy for biodiversity conservation in areas where the natural wetlands were converted into rice fields.


Agricultural wetland Neotropical region Cultivating cycle Sustainability 



This research was supported by funds from CNPq (research 471844/2004-7; doctoral grant to Cristina Stenert 140288/2006-6). Leonardo Maltchik holds a Brazilian Research Council—CNPq Research Productivity grant. The authors are grateful to Dr. Mercedes Marchese for identification of the oligochaetes, Suzana Maria Fagondes de Freitas, MSc, and Álan Panatta for collaboration in the identification of the larval midges, Dr. Georgina Bond Buckup for identification of the Hyalellidae, Dr. Alaíde Aparecida Fonseca Gessner for identification of the Coleoptera, Dr. Márcia Spies and Ana Emília Siegloch, MSc, for identification of the Trichoptera and Ephemeroptera, Carolina C. Mostardeiro, MSc, for identification of the Spongillidae, and Dr. Wagner E. P. Avelar for identification of the Sphaeriidae. We declare that the data collection complied with Brazilian current laws.


  1. Amarante, O. P. Jr., T. C. R. Santos, N. M. Brito & M. L. Ribeiro, 2002. Glifosato: propriedades, toxicidade, usos e legislação. Química Nova 25: 589–593.Google Scholar
  2. American Public Health Association (APHA), 1989. Standard Methods for the Examination of Water and Wastewater, 17th ed. American Public Health Association, American Water Works Association, and Water Pollution Control Federation, Washington, DC.Google Scholar
  3. Azambuja, I. H. V., F. J. Vernetti Jr. & A. M. Magalhães Jr., 2004. Aspectos socioeconômicos da produção do arroz. In Gomes, A. S. & A. M. Magalhães Jr. (eds), Arroz Irrigado no Sul do Brasil (Irrigated Rice in Southern Brazil). Embrapa, Pelotas, RS: 23–44.Google Scholar
  4. Bambaradeniya, C. N. B. & F. P. Amerasinghe, 2003. Biodiversity associated with the rice field agro-ecosystem in Asian countries: a brief review. Working Paper 63. International Water Management Institute (IWMI), Colombo, Sri Lanka.Google Scholar
  5. Bambaradeniya, C. N. B., J. P. Edirisinghe, D. N. Silva, C. V. S. Gunatilleke, K. B. Ranawana & S. Wijekoon, 2004. Biodiversity associated with an irrigated rice agroecosystem in Sri Lanka. Biodiversity and Conservation 13: 1715–1753.CrossRefGoogle Scholar
  6. Brinkhurst, R. O. & M. R. Marchese, 1989. Guía para la identificacion de oligoquetos acuaticos continentales de Sud y Centro America. J. Macia, San Tomé, Argentina.Google Scholar
  7. Brouder, S. M. & J. E. Hill, 1995. Winter flooding of ricelands provides waterfowl habitat. California Agriculture 49: 58–64.CrossRefGoogle Scholar
  8. Coulson, J. C., J. E. L. Butterfield & E. Henderson, 1990. The effect of open drainage ditches on the plant and invertebrate communities of moorland and on the decomposition of peat. Journal of Applied Ecology 27: 549–561.CrossRefGoogle Scholar
  9. Czech, H. A. & K. C. Parsons, 2002. Agricultural wetlands and waterbirds: a review. Waterbirds 25: 56–65.CrossRefGoogle Scholar
  10. Davies, B. E., 1974. Loss-on-ignition as an estimate of soil organic matter. Soil Science Society of America Proceedings 38: 347–353.CrossRefGoogle Scholar
  11. Dufrene, M. & P. Legendre, 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs 67: 345–366.Google Scholar
  12. Elphick, C. S. & L. W. Oring, 2003. Conservation implications of flooding rice fields on winter waterbird communities. Agriculture, Ecosystems & Environment 94: 17–29.CrossRefGoogle Scholar
  13. FAOSTAT, 2008. FAO Statistical Databases [available on internet at http://faostat.fao.org]. Accessed December 10, 2008.
  14. Fernández, H. R. & E. Domínguez, 2001. Guía para la determinación de los artrópodos bentónicos sudamericanos. Universidad Nacional de Tucumán, Tucumán, Argentina.Google Scholar
  15. Fernando, C. H., H. S. Forest & C. Herbert, 1993. A bibliography of references to rice field aquatic fauna, their ecology and rice-fish culture. State University of New York Press, Geneseo, New York.Google Scholar
  16. Finlayson, C. M. & N. C. Davidson, 1999. Global review of wetland resources and priorities for wetland inventory. Ramsar COP7 DOC.19.3 [available on internet at http://www.ramsar.org/cop7/cop7_doc_19.3_e.htm]. Accessed September 20, 2008.
  17. Finlayson, C. M., J. Lowry, M. G. Bellio, S. Nou, R. Pidgeon, D. Walden, C. Humphrey & G. Fox, 2006. Biodiversity of the wetlands of the Kakadu Region, northern Australia. Aquatic Sciences 68: 374–399.CrossRefGoogle Scholar
  18. Frayer, W. E., D. D. Peters & H. R. Pywell, 1989. Wetlands of the California Central Valley: Status and trends – 1939 to mid – 1980’s. US Fish and Wildlife Service, Portland, Oregon.Google Scholar
  19. Gomes, A. S. & A. M. D. Magalhães Jr, 2004. Arroz Irrigado no Sul do Brasil (Irrigated Rice in Southern Brazil). Embrapa, Pelotas, RS.Google Scholar
  20. Gotelli, N. J. & G. L. Entsminger, 2001. EcoSim: Null Models Software for Ecology. Version 7.0. Acquired Intelligence Inc. and Kesey-Bear, Vermont.Google Scholar
  21. Guadagnin, D. & L. Maltchik, 2007. Habitat and landscape factors associated with Neotropical waterbird occurrence and richness in wetland fragments. Biodiversity and Conservation 16: 1231–1244.CrossRefGoogle Scholar
  22. Heckman, C. W., 1979. Ricefield Ecology in Northeastern Thailand: The Effect of Wet and Dry Seasons on a Cultivated Aquatic Ecosystem. Dr. W. Junk Publishers, The Hague, Netherlands.Google Scholar
  23. Heckman, C. W., 1998. The seasonal succession of biotic communities in wetlands of the tropical wet-and-dry climatic zone: V. Aquatic invertebrate communities in the Pantanal of Mato Grosso, Brazil. International Review of Hydrobiology 83: 31–63.CrossRefGoogle Scholar
  24. Heino, J., 2000. Lentic macroinvertebrate assemblage structure along gradients in spatial heterogeneity, habitat size and water chemistry. Hydrobiologia 418: 229–242.CrossRefGoogle Scholar
  25. Hill, M. O. & H. G. Gauch, 1980. Detrended correspondence analysis: an improved ordination technique. Plant Ecology 42: 47–58.CrossRefGoogle Scholar
  26. Instituto Riograndense do Arroz (IRGA), 2007. Arroz irrigado: safra 2006/2007 – produção municipal. Seção de Política Setorial – DCI, Porto Alegre, RS.Google Scholar
  27. Lemly, A. D., R. T. Kingsford & J. R. Thompson, 2000. Irrigated agriculture and wildlife conservation: conflict on a global scale. Environmental Management 25: 485–512.PubMedCrossRefGoogle Scholar
  28. Lim, R. P., 1980. Population changes of some aquatic invertebrates in ricefields. In Furtado, J. I. (ed.), Tropical Ecology and Development. Proceedings of the 5th International Symposium of Tropical Ecology. International Society of Tropical Ecology, Malaysia: 971–980.Google Scholar
  29. Lopretto, E. C. & G. Tell, 1995. Ecosistemas de aguas continentales: metodologías para su estudio. Ediciones Sur, La Plata, Argentina.Google Scholar
  30. Maltchik, L., 2003. Three new wetlands inventories in Brazil. Interciencia 28: 421–423.Google Scholar
  31. Maltchik, L., R. R. Teixeira & C. Stenert, 2006. Post-drainage changes in the structure of the benthic macroinvertebrate community in a floodplain palustrine wetland in the South of Brazil. Acta Limnologica Brasiliensia 18: 181–188.Google Scholar
  32. McCune, B. & M. J. Mefford, 1999. PC-ORD – Multivariate Analysis of Ecological Data. MjM Software Design, Oregon.Google Scholar
  33. Merritt, R. W. & K. W. Cummins, 1996. An Introduction to the Aquatic Insects of North America. Kendall/Hunt Publishing Company, Iowa.Google Scholar
  34. Ministério do Meio Ambiente, 2006. Third National Report to the Convention on Biological Diversity. Ministério do Meio Ambiente, Brasília.Google Scholar
  35. Mitsch, W. J. & J. G. Gosselink, 2000. Wetlands. John Wiley and Sons, New York.Google Scholar
  36. Naranjo, L. G., 1995. An evaluation of the first inventory of South American wetlands. Vegetatio 118: 125–129.CrossRefGoogle Scholar
  37. R Development Core Team, 2009. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0 [available on internet at http://www.R-project.org]. Accessed May 29, 2009.
  38. Rambo, B., 2000. A Fisionomia do Rio Grande do Sul: Ensaio de Monografia Natural. Universidade do Vale do Rio dos Sinos (UNISINOS), São Leopoldo, RS.Google Scholar
  39. Roberts, D. W., 2007. labdsv: Ordination and Multivariate Analysis for Ecology. R package version 1.3-1 [available on internet at http://ecology.msu.montana.edu/labdsv/R]. Accessed June 02, 2009.
  40. Rodrigues, A. S. L., S. J. Andelman, M. I. Bakarr, L. Boitani, T. M. Brooks, R. M. Cowling, L. D. C. Fishpool, G. A. B. Fonseca, K. J. Gaston, M. Hoffmann, J. S. Long, P. A. Marquet, J. D. Pilgrim, R. L. Pressey, J. Schipper, W. Sechrest, S. N. Stuart, L. G. Underhill, R. W. Waller, M. E. J. Watts & X. Yan, 2004. Effectiveness of the global protected area network in representing species diversity. Nature 428: 640–643.PubMedCrossRefGoogle Scholar
  41. Roger, P. A., 1996. Biology and Management of Floodwater Ecosystem in Ricefields. International Rice Research Institute, Philippines.Google Scholar
  42. Roger, P. A., I. F. Grant, P. M. Reddy & I. Watanabe, 1987. The photosynthetic aquatic biomass in wetland ricefields and its effect on nitrogen dynamics. In IRRI (International Rice Research Institute) (ed.), Efficiency of Nitrogen Fertilizers for Rice. IRRI, Philippines: 43–68.Google Scholar
  43. Roger, P. A., K. L. Heong & P. S. Teng, 1991. Biodiversity and sustainability of wetland rice production: role and potential of microorganisms and invertebrates. In Hawksworth, D. L. (ed.), The biodiversity of microorganisms and invertebrates: its role in sustainable agriculture. CABI, Wallingford: 117–136.Google Scholar
  44. Rolon, A. S. & L. Maltchik, 2006. Environmental factors as predictors of aquatic macrophyte richness and composition in wetlands of southern Brazil. Hydrobiologia 556: 221–231.CrossRefGoogle Scholar
  45. Stenert, C. & L. Maltchik, 2007. Influence of area, altitude and hydroperiod on macroinvertebrate communities in southern Brazil wetlands. Marine and Freshwater Research 58: 993–1001.CrossRefGoogle Scholar
  46. Stenert, C., R. C. Bacca, C. C. Mostardeiro & L. Maltchik, 2008. Environmental predictors of macroinvertebrate communities in coastal wetlands of southern Brazil. Marine and Freshwater Research 59: 540–548.CrossRefGoogle Scholar
  47. Suguio, K., 1973. Introdução à Sedimentologia. Edgard Blucher, São Paulo.Google Scholar
  48. Systat, 2004. Systat Software. Richmond, California.Google Scholar
  49. Tarr, T. L., M. J. Baber & K. J. Babbitt, 2005. Macroinvertebrate community structure across a wetland hydroperiod gradient in southern New Hampshire, USA. Wetlands Ecology and Management 13: 321–334.CrossRefGoogle Scholar
  50. Williams, D. D., 1998. The role of dormancy in the evolution and structure of temporary water invertebrate communities. Archiv für Hydrobiologie 52: 109–124.Google Scholar
  51. Wissinger, S. A., 1999. Ecology of wetland invertebrates: synthesis and applications for conservation and management. In Batzer, D. P., R. B. Rader & S. A. Wissinger (eds), Invertebrates in Freshwater Wetlands of North America: Ecology and Management. John Wiley and Sons, New York: 1043–1086.Google Scholar
  52. Zimmer, K. D., M. A. Hanson & M. G. Butler, 2000. Factors influencing invertebrate communities in prairie wetlands: a multivariate approach. Canadian Journal of Fisheries and Aquatic Sciences 57: 76–85.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Cristina Stenert
    • 1
    • 2
  • Roberta C. Bacca
    • 1
  • Leonardo Maltchik
    • 1
  • Odete Rocha
    • 2
  1. 1.Laboratório de Ecologia e Conservação de Ecossistemas AquáticosUniversidade do Vale do Rio dos Sinos, UNISINOSSao LeopoldoBrazil
  2. 2.Departamento de Ecologia e Biologia EvolutivaUniversidade Federal de São Carlos, UFSCarSao CarlosBrazil

Personalised recommendations