, Volume 634, Issue 1, pp 137–151 | Cite as

Spatial and temporal patterns of pioneer macrofauna in recently created ponds: taxonomic and functional approaches

  • A. Ruhí
  • D. Boix
  • J. Sala
  • S. Gascón
  • X. D. Quintana


Man-made ponds are often created to compensate for the loss and degradation of wetlands, but little is known about the processes taking place in these artificial environments, especially at a community level. The macrofaunal assemblage and water chemistry of newly created ponds in three nearby areas in the NE Iberian Peninsula were studied during the first year of life of these ponds in order to (i) detect if any invertebrate assemblage structure change was taking place, (ii) evaluate the effect of local factors on the invertebrate assemblage in each site, and (iii) compare the information obtained by taxonomic and functional approaches. Although invertebrate colonization was rapid, no relevant changes in assemblage parameters were related to time, implying that more time may be needed to detect successional changes in invertebrate assemblages. Local factors—especially those related to hydrological stability—produced notable differences both in the assemblage parameters and in the taxonomic and functional compositions of the invertebrate fauna. Finally, information provided by the functional approach was redundant with respect to that obtained by the classical taxonomic approach: in these newly created systems, the high dominance of a small number of taxa makes the functional approach a simple biological traits analysis of the few dominant species.


Mediterranean ponds Succession Colonization Assemblage structure Functional approach Hydrological stability 



This study was supported by a Ph.D. grant and a Scientific Research grant (CGL2008 05778/BOS) from the Ministerio de Ciencia y Tecnología of the Spanish Government. Also, the authors would like to thank the anonymous reviewers for valuable comments, Dawn Egan for the English revision, and the following field collaborators for their help: Francesc Canet, Jordi Compte, Cristina Conchillo, Helena Dehesa, Núria Pla, Martí Queralt, and Maria Mercè Vidal.

Supplementary material

10750_2009_9896_MOESM1_ESM.doc (296 kb)
(DOC 296 kb)


  1. Abellán, P., D. T. Bilton, A. Millán, D. Sánchez-Fernández & P. M. Ramsay, 2006. Can taxonomic distinctness assess anthropogenic impacts in inland waters? A case study from a Mediterranean river basin. Freshwater Biology 51: 1744–1756.CrossRefGoogle Scholar
  2. Barnes, L. E., 1983. The colonization of ball-clay ponds by macroinvertebrates and macrophytes. Freshwater Biology 13: 561–578.CrossRefGoogle Scholar
  3. Bass, D., 1992. Colonization and succession of benthic macroinvertebrates in Arcadia Lake, a South-Central USA reservoir. Hydrobiologia 242: 123–131.Google Scholar
  4. Benke, A. C., A. D. Huryn, L. A. Smock & J. B. Wallace, 1999. Length–mass relationships for freshwater macroinvertebrates in North America with particular reference to the Southeastern United States. Journal of North American Benthological Society 18: 308–343.CrossRefGoogle Scholar
  5. Blanco, S., S. Romo & M. J. Villena, 2004. Experimental study on the diet of mosquitofish (Gambusia holbrooki) under different ecological conditions in a shallow lake. International Review of Hydrobiology 89: 250–262.CrossRefGoogle Scholar
  6. Boix, D., J. Sala, X. D. Quintana & R. Moreno-Amich, 2004. Succession of the animal community in a Mediterranean temporary pond. Journal of the North American Benthological Society 23: 29–49.CrossRefGoogle Scholar
  7. Boix, D., S. Gascón, J. Sala, M. Martinoy, J. Gifre & X. D. Quintana, 2005. A new index of water quality assessment in Mediterranean wetlands based on crustacean and insect assemblages: the case of Catalunya (NE Iberian peninsula). Aquatic Conservation: Marine and Freshwater Ecosystems 15: 635–651.CrossRefGoogle Scholar
  8. Boix, D., J. Sala, S. Gascón, M. Martinoy, J. Gifre, S. Brucet, A. Badosa, R. López-Flores & X. D. Quintana, 2007. Comparative biodiversity of crustaceans and aquatic insects from various water body types in coastal Mediterranean wetlands. Hydrobiologia 584: 347–359.CrossRefGoogle Scholar
  9. Boix, D., S. Gascón, J. Sala, A. Badosa, S. Brucet, R. López-Flores, M. Martinoy, J. Gifre & X. D. Quintana, 2008. Patterns of composition and species richness of crustaceans and aquatic insects along environmental gradients in Mediterranean water bodies. Hydrobiologia 597: 53–69.CrossRefGoogle Scholar
  10. Brownlow, M. D., A. D. Sparrow & G. G. Ganf, 1994. Classification of water regimes in systems of fluctuating water level. Australian Journal of Marine and Freshwater Research 45: 1375–1385.CrossRefGoogle Scholar
  11. Brucet, S., D. Boix, R. López-Flores, A. Badosa, R. Moreno-Amich & X. D. Quintana, 2005. Zooplankton structure and dynamics in permanent and temporary Mediterranean salt marshes: taxon-based and size-based approaches. Archiv für Hydrobiologie 162: 535–555.CrossRefGoogle Scholar
  12. Cabral, J. A. & J. C. Marques, 1999. Life history, population dynamics and production of eastern mosquitofish, Gambusia holbrooki (Pisces, Poeciliidae), in rice fields of the lower Mondego River Valley, western Portugal. Acta Oecologica 20: 607–620.CrossRefGoogle Scholar
  13. Clarke, K. R. & R. N. Gorley, 2006. PRIMER v6: User Manual/Tutorial. PRIMER-E, Plymouth, UK.Google Scholar
  14. Clarke, K. R. & R. M. Warwick, 2001a. A further biodiversity index applicable to species lists: variation in taxonomic distinctness. Marine Ecology Progress Series 216: 265–278.CrossRefGoogle Scholar
  15. Clarke, K. R. & R. M. Warwick, 2001b. Changes in Marine Communities: An Approach to Statistical Analysis and Interpretation, 2nd ed. PRIMER-E, Plymouth, UK.Google Scholar
  16. Cottenie, K., E. Michels, N. Nuytten & L. De Meester, 2003. Zooplankton metacommunity structure: regional vs local processes in highly interconnected ponds. Ecology 84: 991–1000.CrossRefGoogle Scholar
  17. Csabai, Z. & P. Boda, 2005. Effect of the wind speed on the migration activity of aquatic insects (Coleoptera, Heteroptera). Acta Biologica Hungarica 13: 37–42.Google Scholar
  18. Della Bella, V., M. Bazzanti & F. Chiarotti, 2005. Macroinvertebrate diversity and conservation status of Mediterranean ponds in Italy: water permanence and mesohabitat influence. Aquatic Conservation: Marine and Freshwater Ecosystems 15: 583–600.CrossRefGoogle Scholar
  19. Dray, S., 2004. Packfor R package v. 0.0–7. Available from: (accessed Jaunary 2009).
  20. Fairchild, G. W., A. M. Faulds & J. F. Matta, 2000. Beetle assemblages in ponds: effects of habitat and site age. Freshwater Biology 44: 523–534.CrossRefGoogle Scholar
  21. Fisher, S. G., 1983. Succession in streams. In Barnes, J. R. & G. W. Minshall (eds), Stream Ecology: Application and Testing of General Ecological Theory. Plenum Press, New York.Google Scholar
  22. Frey, D. G., 1993. The penetration of cladocerans into saline waters. Hydrobiologia 267: 233–248.CrossRefGoogle Scholar
  23. Friday, L. E., 1987. The diversity of macroinvertebrate and macrophyte communities in ponds. Freshwater Biology 18: 87–104.CrossRefGoogle Scholar
  24. García-Criado, F., C. Bécares, C. Fernández-Aláez & M. Fernández-Aláez, 2005. Plant-associated invertebrates and ecological quality in some Mediterranean shallow lakes: implications for the application of the EC Water. Aquatic Conservation: Marine and Freshwater Ecosystems 15: 31–50.CrossRefGoogle Scholar
  25. Gascón, S., D. Boix, J. Sala & X. D. Quintana, 2005. Variability of benthic assemblages in relation to the hydrological pattern in Mediterranean salt marshes (Empordà wetlands, NE Iberian Peninsula). Archiv für Hydrobiologie 163: 163–181.CrossRefGoogle Scholar
  26. Gascón, S., D. Boix, J. Sala & X. D. Quintana, 2008. Relation between macroinvertebrate life strategies and habitat traits in Mediterranean salt marsh ponds (Empordà wetlands, NE Iberian Peninsula). Hydrobiologia 597: 71–83.CrossRefGoogle Scholar
  27. Gee, J. H. R., B. D. Smith, K. M. Lee & S. W. Griffiths, 1997. The ecological basis of freshwater pond management for biodiversity. Aquatic Conservation: Marine and Freshwater Ecosystems 7: 91–104.CrossRefGoogle Scholar
  28. Geiger, W., P. Alcorlo, A. Baltanás & C. Montes, 2005. Impact of an introduced Crustacean on the trophic webs of Mediterranean wetlands. Biological Invasions 7: 49–73.CrossRefGoogle Scholar
  29. Gherardi, F. & P. Acquistapace, 2007. Invasive crayfish in Europe: the impact of Procambarus clarkii on the littoral community of a Mediterranean lake. Freshwater Biology 52: 1249–1259.CrossRefGoogle Scholar
  30. Gladden, J. E. & L. A. Smock, 1990. Macroinvertebrate distribution and production on the floodplains of two lowland headwater streams. Freshwater Biology 24: 533–545.CrossRefGoogle Scholar
  31. Grasshoff, K., M. Ehrhardt & K. Kremling, 1983. Methods of Seawater Analysis. Verlag Chemie, Weinheim.Google Scholar
  32. Havel, J. E. & J. B. Shurin, 2004. Mechanisms, effects and scales of dispersal in freshwater zooplankton. Limnology and Oceanography 49: 1229–1238.CrossRefGoogle Scholar
  33. Herrmann, J., A. Boström & I. Bohman, 2000. Invertebrate colonization into the man-made Kalmar Dämme wetland dam system. Verhandlungen/Internationale Vereinigung für theoretische und angewandte Limnologie 27: 1653–1656.Google Scholar
  34. Higgins, M. J. & R. W. Merritt, 1999. Invertebrate seasonal patterns and trophic relationships. In Batzer, D., R. B. Rader & S. A. Wissinger (eds), Invertebrates in Freshwater Wetlands of North America. Wiley, NewYork: 279–297.Google Scholar
  35. Hillman, T. J. & G. P. Quinn, 2002. Temporal changes in macroinvertebrate assemblages following experimental flooding in permanent and temporary wetlands in an Australian floodplain forest. River Research and Applications 18: 137–154.CrossRefGoogle Scholar
  36. Hooper, D. U., M. Solan, A. Symstad, S. Díaz, M. O. Gessner, N. Buchmann, V. Degrange, P. Grime, F. Hulot, F. Mermillod-Blondin, J. Roy, E. Spehn & L. van Peer, 2002. Species diversity, functional diversity and ecosystem functioning. In Loreau, M., S. Naeem & P. Inchausti (eds), Biodiversity and Ecosystem Functioning: Synthesis and Prespectives. Oxford University Press, Oxford: 195–208.Google Scholar
  37. Jeffries, M., 2005. Local-scale turnover of pond insects: intrapond habitat quality and inter-pond geometry are both important. Hydrobiologia 543: 207–220.CrossRefGoogle Scholar
  38. Koutrakis, E. T. & A. C. Tsikliras, 2003. Length-weight relationships of fishes from three northern Aegean estuarine systems (Greece). Journal of Applied Ichthyology 19: 258–260.CrossRefGoogle Scholar
  39. Layton, R. J. & J. R. Voshell Jr., 1991. Colonization of new experimental ponds by benthic macroinvertebrates. Environmental Entomology 20: 110–117.Google Scholar
  40. Lindegaard, C., 1992. Zoobenthos ecology of Thingvallavatn: vertical distribution, abundance, population dynamics and production. Oikos 64: 257–304.CrossRefGoogle Scholar
  41. Lindholm, M. & D. O. Hessen, 2007. Competition and niche partitioning in a floodplain ecosystem: a cladoceran community squeezed between fish and invertebrate predation. African Zoology 42: 158–164.CrossRefGoogle Scholar
  42. Luecke, C. & A. H. Litt, 1987. Effects of predation by Chaoborus flavicans on crustacean zooplankton of Lake Lenore, Washington. Freshwater Biology 18: 1185–1192.CrossRefGoogle Scholar
  43. Malmqvist, B., S. Rundle, C. Brönmark & A. Erlandsson, 1991. Invertebrate colonization of a new, man-made stream in southern Sweden. Freshwater Biology 26: 307–324.CrossRefGoogle Scholar
  44. Merritt, R. W. & K. W. Cummins, 1996. Aquatic Insects of North America. Kendal/Hunt Publishing Company, Dubuque, Iowa.Google Scholar
  45. Meyer, E., 1989. The relationship between body length parameters and dry mass in running water invertebrates. Archiv für Hydrobiologie 117: 191–203.Google Scholar
  46. Montes, C., M. A. Bravo-Utrera, A. Baltanás, C. Duarte & P. J. Gutierrez-Yurrita, 1993. Bases ecológicas para la gestión del cangrejo rojo en el Parque Nacional de Doñana. ICONA-Technical Report, Madrid, Spain.Google Scholar
  47. National Research Council, 1992. Restoration of Aquatic Ecosystems. National Academy Press, Washington, DC.Google Scholar
  48. Oertli, B., J. Biggs, R. Céréghino, P. Grillas, P. Joly & J.-B. Lachavanne, 2005. Conservation and monitoring of pond biodiversity: introduction. Aquatic Conservation: Marine and Freshwater Ecosystems 15: 535–540.CrossRefGoogle Scholar
  49. Oksanen, J., R. Kindt, P. Legendre & R. B. O’hara, 2005. Vegan: community ecology package, v. 1.7-81. Available from: (accessed Jaunary 2009).
  50. Quintana, X. D., 1995. Relaciones entre el peso y la longitud en Aedes, Culex y Gammarus. Limnética 11: 15–17.Google Scholar
  51. Quintana, X. D., S. Brucet, D. Boix, R. López-Flores, S. Gascón, A. Badosa, J. Sala, R. Moreno-Amich & J. J. Egozcue, 2008. A non-parametric method for the measurement of size diversity, with emphasis on data standardization. Limnology and Oceanography: Methods 6: 75–86.Google Scholar
  52. Rodríguez, M. A. & P. Magnan, 1993. Community structure of lacustrine macrobenthos: do taxon-based and size-based approaches yield similar insights? Canadian Journal of Fisheries and Aquatic Sciences 50: 800–815.CrossRefGoogle Scholar
  53. Savage, A. A., J. H. Mathews & D. L. Beaumont, 1998. Community development in the benthic macroinvertebrate fauna of a lowland lake, Oak Mere, from 1994 to 1996. Archiv für Hydrobiologie 143: 295–305.Google Scholar
  54. Schneider, D. W. & T. M. Frost, 1996. Habitat duration and community structure in temporary ponds. Journal of the North American Benthological Society 15: 64–86.CrossRefGoogle Scholar
  55. Smit, H., E. D. Van Heel & S. Wiersma, 1993. Biovolume as a tool in biomass determination of Oligochaeta and Chironomidae. Freshwater Biology 29: 37–46.CrossRefGoogle Scholar
  56. Smock, L. A., 1980. Relationships between body size and biomass of aquatic insects. Freshwater Biology 10: 375–383.CrossRefGoogle Scholar
  57. Talling, J. F., & D. Driver, 1963. Some problems in the estimation of chlorophyll a in phytoplankton. In Proceedings of a Conference on Primary Productivity Measurements, Marine and Freshwater, University of Hawaii, Honolulu, 1961. US Atomic Energy Commission TID-7633: 142–146.Google Scholar
  58. Traina, J. A. & C. N. Ende, 1992. Estimation of larval dry weight of Chaoborus americanus. Hydrobiologia 228: 219–223.Google Scholar
  59. Velasco, J., A. Millán & L. Ramírez-Díaz, 1993. Colonización y sucesión de nuevos medios acuáticos II. Variación temporal de la composición y estructura de las comunidades de insectos. Limnética 9: 73–85.Google Scholar
  60. Verberk, W. C. E. P., H. Siepel & H. Esselink, 2008. Life-history strategies in freshwater macroinvertebrates. Freshwater Biology 53: 1722–1738.CrossRefGoogle Scholar
  61. Warwick, R. M. & K. R. Clarke, 1995. New ‘biodiversity’ measures reveal a decrease in taxonomic distinctness with increasing stress. Marine Ecology Progress Series 129: 301–305.CrossRefGoogle Scholar
  62. Wiggins, G. B., R. J. Mackay & I. M. Smith, 1980. Evolutionary and ecological strategies of animals in annual temporary pools. Archiv für Hydrobiologie supplement 58: 97–206.Google Scholar
  63. Williams, D. D., 1996. Environmental constraints in temporary fresh waters and their consequences for insect fauna. Journal of the North American Benthological Society 15: 634–650.CrossRefGoogle Scholar
  64. Williams, D. D., 2006. The Biology of Temporary Waters. Oxford University Press, Oxford.Google Scholar
  65. Williams, D. D. & N. E. Williams, 1998. Aquatic insects in an estuarine environment: densities, distribution and salinity tolerance. Freshwater Biology 39: 411–421.CrossRefGoogle Scholar
  66. Wright, J. P., S. Naeem, A. Hector, C. Lehman, P. B. Reich, B. Schmid & D. Tilman, 2006. Conventional functional classification schemes underestimate the relationship with ecosystem functioning. Ecology Letters 9: 111–120.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • A. Ruhí
    • 1
  • D. Boix
    • 1
  • J. Sala
    • 1
  • S. Gascón
    • 1
  • X. D. Quintana
    • 1
  1. 1.Institute of Aquatic EcologyUniversity of Girona, Campus de Montilivi, Facultat de CiènciesGironaSpain

Personalised recommendations