Skip to main content
Log in

Spatial and temporal patterns of pioneer macrofauna in recently created ponds: taxonomic and functional approaches

  • POND CONSERVATION
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Man-made ponds are often created to compensate for the loss and degradation of wetlands, but little is known about the processes taking place in these artificial environments, especially at a community level. The macrofaunal assemblage and water chemistry of newly created ponds in three nearby areas in the NE Iberian Peninsula were studied during the first year of life of these ponds in order to (i) detect if any invertebrate assemblage structure change was taking place, (ii) evaluate the effect of local factors on the invertebrate assemblage in each site, and (iii) compare the information obtained by taxonomic and functional approaches. Although invertebrate colonization was rapid, no relevant changes in assemblage parameters were related to time, implying that more time may be needed to detect successional changes in invertebrate assemblages. Local factors—especially those related to hydrological stability—produced notable differences both in the assemblage parameters and in the taxonomic and functional compositions of the invertebrate fauna. Finally, information provided by the functional approach was redundant with respect to that obtained by the classical taxonomic approach: in these newly created systems, the high dominance of a small number of taxa makes the functional approach a simple biological traits analysis of the few dominant species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abellán, P., D. T. Bilton, A. Millán, D. Sánchez-Fernández & P. M. Ramsay, 2006. Can taxonomic distinctness assess anthropogenic impacts in inland waters? A case study from a Mediterranean river basin. Freshwater Biology 51: 1744–1756.

    Article  Google Scholar 

  • Barnes, L. E., 1983. The colonization of ball-clay ponds by macroinvertebrates and macrophytes. Freshwater Biology 13: 561–578.

    Article  Google Scholar 

  • Bass, D., 1992. Colonization and succession of benthic macroinvertebrates in Arcadia Lake, a South-Central USA reservoir. Hydrobiologia 242: 123–131.

    Google Scholar 

  • Benke, A. C., A. D. Huryn, L. A. Smock & J. B. Wallace, 1999. Length–mass relationships for freshwater macroinvertebrates in North America with particular reference to the Southeastern United States. Journal of North American Benthological Society 18: 308–343.

    Article  Google Scholar 

  • Blanco, S., S. Romo & M. J. Villena, 2004. Experimental study on the diet of mosquitofish (Gambusia holbrooki) under different ecological conditions in a shallow lake. International Review of Hydrobiology 89: 250–262.

    Article  Google Scholar 

  • Boix, D., J. Sala, X. D. Quintana & R. Moreno-Amich, 2004. Succession of the animal community in a Mediterranean temporary pond. Journal of the North American Benthological Society 23: 29–49.

    Article  Google Scholar 

  • Boix, D., S. Gascón, J. Sala, M. Martinoy, J. Gifre & X. D. Quintana, 2005. A new index of water quality assessment in Mediterranean wetlands based on crustacean and insect assemblages: the case of Catalunya (NE Iberian peninsula). Aquatic Conservation: Marine and Freshwater Ecosystems 15: 635–651.

    Article  Google Scholar 

  • Boix, D., J. Sala, S. Gascón, M. Martinoy, J. Gifre, S. Brucet, A. Badosa, R. López-Flores & X. D. Quintana, 2007. Comparative biodiversity of crustaceans and aquatic insects from various water body types in coastal Mediterranean wetlands. Hydrobiologia 584: 347–359.

    Article  Google Scholar 

  • Boix, D., S. Gascón, J. Sala, A. Badosa, S. Brucet, R. López-Flores, M. Martinoy, J. Gifre & X. D. Quintana, 2008. Patterns of composition and species richness of crustaceans and aquatic insects along environmental gradients in Mediterranean water bodies. Hydrobiologia 597: 53–69.

    Article  Google Scholar 

  • Brownlow, M. D., A. D. Sparrow & G. G. Ganf, 1994. Classification of water regimes in systems of fluctuating water level. Australian Journal of Marine and Freshwater Research 45: 1375–1385.

    Article  Google Scholar 

  • Brucet, S., D. Boix, R. López-Flores, A. Badosa, R. Moreno-Amich & X. D. Quintana, 2005. Zooplankton structure and dynamics in permanent and temporary Mediterranean salt marshes: taxon-based and size-based approaches. Archiv für Hydrobiologie 162: 535–555.

    Article  Google Scholar 

  • Cabral, J. A. & J. C. Marques, 1999. Life history, population dynamics and production of eastern mosquitofish, Gambusia holbrooki (Pisces, Poeciliidae), in rice fields of the lower Mondego River Valley, western Portugal. Acta Oecologica 20: 607–620.

    Article  Google Scholar 

  • Clarke, K. R. & R. N. Gorley, 2006. PRIMER v6: User Manual/Tutorial. PRIMER-E, Plymouth, UK.

    Google Scholar 

  • Clarke, K. R. & R. M. Warwick, 2001a. A further biodiversity index applicable to species lists: variation in taxonomic distinctness. Marine Ecology Progress Series 216: 265–278.

    Article  Google Scholar 

  • Clarke, K. R. & R. M. Warwick, 2001b. Changes in Marine Communities: An Approach to Statistical Analysis and Interpretation, 2nd ed. PRIMER-E, Plymouth, UK.

    Google Scholar 

  • Cottenie, K., E. Michels, N. Nuytten & L. De Meester, 2003. Zooplankton metacommunity structure: regional vs local processes in highly interconnected ponds. Ecology 84: 991–1000.

    Article  Google Scholar 

  • Csabai, Z. & P. Boda, 2005. Effect of the wind speed on the migration activity of aquatic insects (Coleoptera, Heteroptera). Acta Biologica Hungarica 13: 37–42.

    Google Scholar 

  • Della Bella, V., M. Bazzanti & F. Chiarotti, 2005. Macroinvertebrate diversity and conservation status of Mediterranean ponds in Italy: water permanence and mesohabitat influence. Aquatic Conservation: Marine and Freshwater Ecosystems 15: 583–600.

    Article  Google Scholar 

  • Dray, S., 2004. Packfor R package v. 0.0–7. Available from: http://cran.r-project.org (accessed Jaunary 2009).

  • Fairchild, G. W., A. M. Faulds & J. F. Matta, 2000. Beetle assemblages in ponds: effects of habitat and site age. Freshwater Biology 44: 523–534.

    Article  Google Scholar 

  • Fisher, S. G., 1983. Succession in streams. In Barnes, J. R. & G. W. Minshall (eds), Stream Ecology: Application and Testing of General Ecological Theory. Plenum Press, New York.

    Google Scholar 

  • Frey, D. G., 1993. The penetration of cladocerans into saline waters. Hydrobiologia 267: 233–248.

    Article  Google Scholar 

  • Friday, L. E., 1987. The diversity of macroinvertebrate and macrophyte communities in ponds. Freshwater Biology 18: 87–104.

    Article  Google Scholar 

  • García-Criado, F., C. Bécares, C. Fernández-Aláez & M. Fernández-Aláez, 2005. Plant-associated invertebrates and ecological quality in some Mediterranean shallow lakes: implications for the application of the EC Water. Aquatic Conservation: Marine and Freshwater Ecosystems 15: 31–50.

    Article  Google Scholar 

  • Gascón, S., D. Boix, J. Sala & X. D. Quintana, 2005. Variability of benthic assemblages in relation to the hydrological pattern in Mediterranean salt marshes (Empordà wetlands, NE Iberian Peninsula). Archiv für Hydrobiologie 163: 163–181.

    Article  Google Scholar 

  • Gascón, S., D. Boix, J. Sala & X. D. Quintana, 2008. Relation between macroinvertebrate life strategies and habitat traits in Mediterranean salt marsh ponds (Empordà wetlands, NE Iberian Peninsula). Hydrobiologia 597: 71–83.

    Article  Google Scholar 

  • Gee, J. H. R., B. D. Smith, K. M. Lee & S. W. Griffiths, 1997. The ecological basis of freshwater pond management for biodiversity. Aquatic Conservation: Marine and Freshwater Ecosystems 7: 91–104.

    Article  Google Scholar 

  • Geiger, W., P. Alcorlo, A. Baltanás & C. Montes, 2005. Impact of an introduced Crustacean on the trophic webs of Mediterranean wetlands. Biological Invasions 7: 49–73.

    Article  Google Scholar 

  • Gherardi, F. & P. Acquistapace, 2007. Invasive crayfish in Europe: the impact of Procambarus clarkii on the littoral community of a Mediterranean lake. Freshwater Biology 52: 1249–1259.

    Article  Google Scholar 

  • Gladden, J. E. & L. A. Smock, 1990. Macroinvertebrate distribution and production on the floodplains of two lowland headwater streams. Freshwater Biology 24: 533–545.

    Article  Google Scholar 

  • Grasshoff, K., M. Ehrhardt & K. Kremling, 1983. Methods of Seawater Analysis. Verlag Chemie, Weinheim.

    Google Scholar 

  • Havel, J. E. & J. B. Shurin, 2004. Mechanisms, effects and scales of dispersal in freshwater zooplankton. Limnology and Oceanography 49: 1229–1238.

    Article  Google Scholar 

  • Herrmann, J., A. Boström & I. Bohman, 2000. Invertebrate colonization into the man-made Kalmar Dämme wetland dam system. Verhandlungen/Internationale Vereinigung für theoretische und angewandte Limnologie 27: 1653–1656.

    Google Scholar 

  • Higgins, M. J. & R. W. Merritt, 1999. Invertebrate seasonal patterns and trophic relationships. In Batzer, D., R. B. Rader & S. A. Wissinger (eds), Invertebrates in Freshwater Wetlands of North America. Wiley, NewYork: 279–297.

    Google Scholar 

  • Hillman, T. J. & G. P. Quinn, 2002. Temporal changes in macroinvertebrate assemblages following experimental flooding in permanent and temporary wetlands in an Australian floodplain forest. River Research and Applications 18: 137–154.

    Article  Google Scholar 

  • Hooper, D. U., M. Solan, A. Symstad, S. Díaz, M. O. Gessner, N. Buchmann, V. Degrange, P. Grime, F. Hulot, F. Mermillod-Blondin, J. Roy, E. Spehn & L. van Peer, 2002. Species diversity, functional diversity and ecosystem functioning. In Loreau, M., S. Naeem & P. Inchausti (eds), Biodiversity and Ecosystem Functioning: Synthesis and Prespectives. Oxford University Press, Oxford: 195–208.

    Google Scholar 

  • Jeffries, M., 2005. Local-scale turnover of pond insects: intrapond habitat quality and inter-pond geometry are both important. Hydrobiologia 543: 207–220.

    Article  Google Scholar 

  • Koutrakis, E. T. & A. C. Tsikliras, 2003. Length-weight relationships of fishes from three northern Aegean estuarine systems (Greece). Journal of Applied Ichthyology 19: 258–260.

    Article  Google Scholar 

  • Layton, R. J. & J. R. Voshell Jr., 1991. Colonization of new experimental ponds by benthic macroinvertebrates. Environmental Entomology 20: 110–117.

    Google Scholar 

  • Lindegaard, C., 1992. Zoobenthos ecology of Thingvallavatn: vertical distribution, abundance, population dynamics and production. Oikos 64: 257–304.

    Article  Google Scholar 

  • Lindholm, M. & D. O. Hessen, 2007. Competition and niche partitioning in a floodplain ecosystem: a cladoceran community squeezed between fish and invertebrate predation. African Zoology 42: 158–164.

    Article  Google Scholar 

  • Luecke, C. & A. H. Litt, 1987. Effects of predation by Chaoborus flavicans on crustacean zooplankton of Lake Lenore, Washington. Freshwater Biology 18: 1185–1192.

    Article  Google Scholar 

  • Malmqvist, B., S. Rundle, C. Brönmark & A. Erlandsson, 1991. Invertebrate colonization of a new, man-made stream in southern Sweden. Freshwater Biology 26: 307–324.

    Article  Google Scholar 

  • Merritt, R. W. & K. W. Cummins, 1996. Aquatic Insects of North America. Kendal/Hunt Publishing Company, Dubuque, Iowa.

    Google Scholar 

  • Meyer, E., 1989. The relationship between body length parameters and dry mass in running water invertebrates. Archiv für Hydrobiologie 117: 191–203.

    Google Scholar 

  • Montes, C., M. A. Bravo-Utrera, A. Baltanás, C. Duarte & P. J. Gutierrez-Yurrita, 1993. Bases ecológicas para la gestión del cangrejo rojo en el Parque Nacional de Doñana. ICONA-Technical Report, Madrid, Spain.

    Google Scholar 

  • National Research Council, 1992. Restoration of Aquatic Ecosystems. National Academy Press, Washington, DC.

    Google Scholar 

  • Oertli, B., J. Biggs, R. Céréghino, P. Grillas, P. Joly & J.-B. Lachavanne, 2005. Conservation and monitoring of pond biodiversity: introduction. Aquatic Conservation: Marine and Freshwater Ecosystems 15: 535–540.

    Article  Google Scholar 

  • Oksanen, J., R. Kindt, P. Legendre & R. B. O’hara, 2005. Vegan: community ecology package, v. 1.7-81. Available from: http://cran.r-project.org (accessed Jaunary 2009).

  • Quintana, X. D., 1995. Relaciones entre el peso y la longitud en Aedes, Culex y Gammarus. Limnética 11: 15–17.

    Google Scholar 

  • Quintana, X. D., S. Brucet, D. Boix, R. López-Flores, S. Gascón, A. Badosa, J. Sala, R. Moreno-Amich & J. J. Egozcue, 2008. A non-parametric method for the measurement of size diversity, with emphasis on data standardization. Limnology and Oceanography: Methods 6: 75–86.

    Google Scholar 

  • Rodríguez, M. A. & P. Magnan, 1993. Community structure of lacustrine macrobenthos: do taxon-based and size-based approaches yield similar insights? Canadian Journal of Fisheries and Aquatic Sciences 50: 800–815.

    Article  Google Scholar 

  • Savage, A. A., J. H. Mathews & D. L. Beaumont, 1998. Community development in the benthic macroinvertebrate fauna of a lowland lake, Oak Mere, from 1994 to 1996. Archiv für Hydrobiologie 143: 295–305.

    Google Scholar 

  • Schneider, D. W. & T. M. Frost, 1996. Habitat duration and community structure in temporary ponds. Journal of the North American Benthological Society 15: 64–86.

    Article  Google Scholar 

  • Smit, H., E. D. Van Heel & S. Wiersma, 1993. Biovolume as a tool in biomass determination of Oligochaeta and Chironomidae. Freshwater Biology 29: 37–46.

    Article  Google Scholar 

  • Smock, L. A., 1980. Relationships between body size and biomass of aquatic insects. Freshwater Biology 10: 375–383.

    Article  Google Scholar 

  • Talling, J. F., & D. Driver, 1963. Some problems in the estimation of chlorophyll a in phytoplankton. In Proceedings of a Conference on Primary Productivity Measurements, Marine and Freshwater, University of Hawaii, Honolulu, 1961. US Atomic Energy Commission TID-7633: 142–146.

  • Traina, J. A. & C. N. Ende, 1992. Estimation of larval dry weight of Chaoborus americanus. Hydrobiologia 228: 219–223.

    Google Scholar 

  • Velasco, J., A. Millán & L. Ramírez-Díaz, 1993. Colonización y sucesión de nuevos medios acuáticos II. Variación temporal de la composición y estructura de las comunidades de insectos. Limnética 9: 73–85.

    Google Scholar 

  • Verberk, W. C. E. P., H. Siepel & H. Esselink, 2008. Life-history strategies in freshwater macroinvertebrates. Freshwater Biology 53: 1722–1738.

    Article  Google Scholar 

  • Warwick, R. M. & K. R. Clarke, 1995. New ‘biodiversity’ measures reveal a decrease in taxonomic distinctness with increasing stress. Marine Ecology Progress Series 129: 301–305.

    Article  Google Scholar 

  • Wiggins, G. B., R. J. Mackay & I. M. Smith, 1980. Evolutionary and ecological strategies of animals in annual temporary pools. Archiv für Hydrobiologie supplement 58: 97–206.

    Google Scholar 

  • Williams, D. D., 1996. Environmental constraints in temporary fresh waters and their consequences for insect fauna. Journal of the North American Benthological Society 15: 634–650.

    Article  Google Scholar 

  • Williams, D. D., 2006. The Biology of Temporary Waters. Oxford University Press, Oxford.

    Google Scholar 

  • Williams, D. D. & N. E. Williams, 1998. Aquatic insects in an estuarine environment: densities, distribution and salinity tolerance. Freshwater Biology 39: 411–421.

    Article  Google Scholar 

  • Wright, J. P., S. Naeem, A. Hector, C. Lehman, P. B. Reich, B. Schmid & D. Tilman, 2006. Conventional functional classification schemes underestimate the relationship with ecosystem functioning. Ecology Letters 9: 111–120.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by a Ph.D. grant and a Scientific Research grant (CGL2008 05778/BOS) from the Ministerio de Ciencia y Tecnología of the Spanish Government. Also, the authors would like to thank the anonymous reviewers for valuable comments, Dawn Egan for the English revision, and the following field collaborators for their help: Francesc Canet, Jordi Compte, Cristina Conchillo, Helena Dehesa, Núria Pla, Martí Queralt, and Maria Mercè Vidal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ruhí.

Additional information

Guest editors: B. Oertli, R. Cereghino, A. Hull & R. Miracle

Pond Conservation: From Science to Practice. 3rd Conference of the European Pond Conservation Network, Valencia, Spain, 14–16 May 2008

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 296 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruhí, A., Boix, D., Sala, J. et al. Spatial and temporal patterns of pioneer macrofauna in recently created ponds: taxonomic and functional approaches. Hydrobiologia 634, 137–151 (2009). https://doi.org/10.1007/s10750-009-9896-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-009-9896-4

Keywords

Navigation