, Volume 635, Issue 1, pp 81–94 | Cite as

Effects of food quality on tissue-specific isotope ratios in the mussel Perna perna

Primary research paper


Investigations into trophic ecology and aquatic food web resolution are increasingly accomplished through stable isotope analysis. The incorporation of dietary and metabolic changes over time results in variations in isotope signatures and turnover rates of producers and consumers at tissue, individual, population and species levels. Consequently, the elucidation of trophic relationships in aquatic systems depends on establishing standard isotope values and tissue turnover rates for the level in question. This study investigated the effect of diet and food quality on isotopic signatures of four mussel tissues: adductor muscle, gonad, gill and mantle tissue from the brown mussel Perna perna. In the laboratory, mussels were fed one of the two isotopically distinct diets for 3 months. Although not all results were significant, overall δ13C ratios in adductor, mantle and gill tissues gradually approached food source signatures in both diets. PERMANOVA analyses revealed significant changes over time in tissue δ13C (mantle and gill) with both diets and in δ15N (all tissues) and C:N ratios (mantle and gill) for one diet only. The percentage of replaced carbon isotopes were calculated for the 3 month period and differed among tissues and between diets. The tissue with the highest and lowest amount of replaced isotopes over 81 days were mantle tissue on the kelp diet (33.89%) and adductor tissue on the fish food diet (4.14%), respectively. Percentages could not be calculated for any tissue in either diet for δ15N due to the lack of significant change in tissue nitrogen. Fractionation patterns in tissues for both diets can be linked to nutritional stress, suggesting that consumer isotopic signatures are strongly dependent on food quality, which can significantly affect the degree of isotopic enrichment within a trophic level.


Diet Food quality Perna perna Stable isotopes Tissue Starvation 



Many thanks to both Hydribiologia’s reviewers who provided constructive comments that have significantly improved the manuscript. Thanks as well to Prof. M. Villet and Dr. F. Porri, Rhodes University, South Africa for providing statistical help and direction, and to J. Lanham for isotopic analysis at the Stable Light Isotope Unit, University of Cape Town, South Africa. This study is based upon research supported by the South African Research Chairs Initiative of the Department of Science and Technology and National Research Foundation.

Supplementary material

10750_2009_9865_MOESM1_ESM.doc (24 kb)
(DOC 24 kb)


  1. Aberle, N. & M. Malzahn, 2007. Interspecific and nutrient-dependent variations in stable isotope fractionation: experimental studies simulating pelagic multitrophic systems. Plant Animal Interactions 154: 291–303.Google Scholar
  2. Adams, T. S. & R. W. Sterner, 2000. The effect of dietary nitrogen content on trophic level 15N enrichment. Limnology and Oceanography 45: 601–607.Google Scholar
  3. Aldridge, D. W., W. D. Russel-Hunter & D. E. Buckley, 1983. Age-related differential catabolism in the snail, Viviparous georgianus, and its significance in the bioenergetics of sexual dimorphism. Canadian Journal of Zoology 64: 340–346.CrossRefGoogle Scholar
  4. Ambrose, S. & L. Norr, 1993. Carbon isotopic evidence for routing of dietary protein to bone collagen, and whole diet to bone apatite carbonate: purified diet growth experiments. In Lambert, J. & G. Grupe (eds), Molecular Archaeology of Prehistoric Human Bone. Springer-Verlag, Berlin: 1–37.Google Scholar
  5. Anderson, M. J., 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecology 26: 32–46.CrossRefGoogle Scholar
  6. Augley, J., M. Huxham, F. M. Fernandes, A. R. Lyndon & A. Bury, 2007. Carbon stable isotopes in estuarine sediments and their utility as migration markers for nursery studies in the Firth of Forth and Forth Estuary, Scotland. Estuarine Coastal and Shelf Science 72: 648–656.CrossRefGoogle Scholar
  7. Badalamenti, F., G. D’Anna, J. K. Pinnegar & N. V. C. Polunin, 2002. Size-related trophodynamic changes in three target fish species recovering from intensive trawling. Marine Biology 141: 561–570.CrossRefGoogle Scholar
  8. Bayne, B. & A. Hawkins, 1990. Filter feeding in bivalve molluscs: controls on energy balance. In Mellinger, J. (ed.), Animal Nutrition and Transport Processes. 1 Nutrition in Wild and Domestic Animals. Karger, Basel: 70–83.Google Scholar
  9. Bearhop, S., S. Waldron, S. C. Votier & R. W. Furness, 2002. Factors that influence assimilation rates and fractionation of nitrogen and carbon stable isotopes in avian blood and feathers. Physiological and Biochemical Zoology 75: 451–458.PubMedCrossRefGoogle Scholar
  10. Bearhop, S., C. E. Adams, S. Waldron, R. A. Fuller & H. Macleod, 2004. Determining trophic niche width: a novel approach using stable isotope analysis. Journal of Animal Ecology 73: 1007–1012.CrossRefGoogle Scholar
  11. Bode, A., M. T. Alvarez-Ossorio & M. Varela, 2006. Phytoplankton and macrophyte contributions to littoral food webs in the Galician upwelling estimated from stable isotopes. Marine Ecological Progress Series 318: 89–102.CrossRefGoogle Scholar
  12. Bodin, N., F. Le Loc’h, C. Hily, X. Caisey, D. Latrouite & M.-A. Le Guellec, 2007. Variability of stable isotope signatures (δ13C and δ15N) in two spider crab populations (Maja brachydactyla) in Western Europe. Journal of Experimental Marine Biology and Ecology 343: 149–157.CrossRefGoogle Scholar
  13. Breese, W. P., E. Millemann & R. E. Dimick, 1963. Stimulation of spawning in the mussels, Mytilus edulis Linnaeus and Mytilus californianus Conrad, by Kraft mill effluent. Biological Bulletin 125: 197–205.CrossRefGoogle Scholar
  14. Cranford, P. J. & P. S. Hill, 1999. Seasonal variation in food particle utilization by the suspension-feeding bivalve molluscs Mytilus edulis and Placopecten magellanicus. Marine Ecological Progress Series 190: 223–239.CrossRefGoogle Scholar
  15. Crespo, C. A. & J. Espinosa, 1990. Nutrient storage cell isolation from mantle tissue of Mytilus galloprovincialis: glucose release and glycogen content. Revista Española de Fisiología 46: 241–246.PubMedGoogle Scholar
  16. DeNiro, M. J. & S. Epstein, 1977. A mechanism of carbon isotope fractionation associated with lipid synthesis. Science 197: 261–263.PubMedCrossRefGoogle Scholar
  17. DeNiro, M. J. & S. Epstein, 1978. Influence of diet on the distribution of carbon isotopes in animals. Geochimica Cosmochimica Acta 42: 495–506.CrossRefGoogle Scholar
  18. DeNiro, M. J. & S. Epstein, 1981. Influence of diet on the distribution of nitrogen isotopes in animals. Geochimica Cosmochimica Acta 45: 341–351.CrossRefGoogle Scholar
  19. Deudero, S., M. Cabanellas, A. Blanco & S. Tejada, 2009. Stable isotope fractionation in the digestive gland, muscle and gills tissues of the marine mussel Mytilus galloprovincialis. Journal of Experimental Marine Biology and Ecology 368: 181–188.CrossRefGoogle Scholar
  20. Doucett, R. R., R. K. Booth, G. Power & R. S. McKinley, 1999. Effects of the spawning migration on the nutritional status of anadromous Atlantic salmon (Salmo salar): insights from stable-isotope analysis. Canadian Journal of Fisheries and Aquatic Science 56: 2172–2180.CrossRefGoogle Scholar
  21. Dunton, K. H. & D. M. Schell, 1987. Dependence of consumers on macroalgal (Laminaria solidungula) carbon in an arctic kelp community: δ13C evidence. Marine Biology 93: 615–625.CrossRefGoogle Scholar
  22. Frazer, T., R. Ross, L. Quetin & J. Montoya, 1997. Turnover of carbon and nitrogen during growth of larval krill, Euphausia superba Dana: a stable isotope approach. Journal of Experimental Marine Biology and Ecology 212: 259–275.CrossRefGoogle Scholar
  23. Fredriksen, S., 2003. Food web studies in a Norwegian kelp forest based on stable isotope (δ13C and δ15N) analysis. Marine Ecological Progress Series 260: 71–81.CrossRefGoogle Scholar
  24. Freites, L., U. Labarta & M. J. Fernandez-Reiriz, 2002. Evolution of fatty acid profiles of subtidal and rocky shore mussel seed (Mytilus galloprovincialis Link.). Influence of environmental parameters. Journal of Experimental Marine Biology and Ecology 268: 185–204.CrossRefGoogle Scholar
  25. Fry, B. & C. Arnold, 1982. Rapid 13C/12C turnover during growth of brown shrimp (Penaeus aztecus). Oecologia 54: 200–204.CrossRefGoogle Scholar
  26. Fry, B. & E. B. Sherr, 1984. δ13C measurements as indicators of carbon flow in marine and freshwater ecosystems. Contributions in Marine Science 27: 13–17.Google Scholar
  27. Fry, B., P. L. Mumford, F. Tam, D. D. Fox, G. L. Warren, K. E. Havens & A. D. Steinman, 1999. Trophic position and individual feeding histories of fish from Lake Okeechobee, Florida. Canadian Journal of Fisheries and Aquatic Science 56: 590–600.CrossRefGoogle Scholar
  28. Gabbott, P. A. & K. Peek, 1991. Cellular biochemistry of the mantle tissue of the mussel Mytilus edulis L. Aquaculture 94: 165–176.CrossRefGoogle Scholar
  29. Gaebler, O. H., T. G. Vitti & R. Vukmirovich, 1966. Isotope effects in metabolism of 14N and 15N from unlabeled dietary proteins. Canadian Journal of Biochemistry 44: 1249–1257.PubMedGoogle Scholar
  30. Gannes, L. Z., D. M. O’Brien & C. Martinez del Rio, 1997. Stable isotopes in animal ecology: assumptions, caveats, and a call for more laboratory experiments. Ecology 78: 1271–1276.Google Scholar
  31. Gardner, J. P. A., 2002. Effects of seston variability on the clearance rate and absorption efficiency of the mussels Aulacomya maoriana, Mytilus galloprovincialis and Perna canaliculus from New Zealand. Journal of Experimental Marine Biology and Ecology 268: 83–101.CrossRefGoogle Scholar
  32. Gorokhova, E. & S. Hansson, 1999. An experimental study on variations in stable carbon and nitrogen isotope fractionation during growth of Mysis mixta and Neomysis integer. Canadian Journal of Fisheries and Aquatic Science 56: 2203–2210.CrossRefGoogle Scholar
  33. Griffiths, C. L. & P. A. R. Hockey, 1987. A model describing the interactive roles of predation, competition and tidal elevation structuring mussel populations. South African Journal of Marine Science 5: 547–556.Google Scholar
  34. Gu, B., D. M. Schell & V. Alexander, 1994. Stable carbon and nitrogen isotopic analysis of the plankton food web in a subarctic lake. Canadian Journal of Fisheries and Aquatic Sciences 51: 1338–1344.CrossRefGoogle Scholar
  35. Haubert, D., R. Langel, S. Scheu & L. Ruess, 2005. Effects of food quality, starvation and life stage on stable isotope fractionation in Collembola. Pedobiologia 49: 229–237.CrossRefGoogle Scholar
  36. Hawkins, A. J. S., B. L. Bayne & A. J. Day, 1986. Protein turnover, physiological energetics and heterozygosity in the blue mussel, Mytilus edulis: the basis of variable age-specific growth. Proceedings of the Royal Society of London B 229: 161–176.CrossRefGoogle Scholar
  37. Hendriks, I. E., L. A. V. Duren & P. M. J. Herman, 2003. Effect of dietary polyunsaturated fatty acids on reproductive output and larval growth of bivalves. Journal of Experimental Marine Biology and Ecology 296: 199–213.CrossRefGoogle Scholar
  38. Hesslein, R. H., K. A. Hallard & P. Ramlal, 1993. Replacement of sulfur, carbon, and nitrogen in tissue of growing broad whitefish (Coregonus nasus) in response to a change in diet traced by δ34S, δ13C and δ15N. Canadian Journal of Fisheries and Aquatic Science 50: 2071–2076.CrossRefGoogle Scholar
  39. Hill, J., C. McQuaid & S. Kaehler, 2006. Biogeographic and nearshore/offshore trends in isotope ratios of intertidal mussels and their food sources around the coast of southern Africa. Marine Ecology Progress Series 318: 63–73.CrossRefGoogle Scholar
  40. Hobson, K. A., 1999. Tracing origins and migration of wildlife using stable isotopes: a review. Oecologia 120: 314–326.CrossRefGoogle Scholar
  41. Hobson, K. A. & R. G. Clark, 1992. Assessing avian diets using stable isotopes. II. Factors influencing diet-tissue fractionation. Condor 94: 189–197.CrossRefGoogle Scholar
  42. Hobson, K. A. & R. G. Clark, 1993. Turnover of 13C in cellular and plasma fractions of blood: implications for nondestructive sampling in avian dietary studies. Auk 110: 638–641.Google Scholar
  43. Hobson, K. A. & L. I. Wassenaar, 1997. Linking breeding and wintering grounds of neotropical migrant songbirds using stable hydrogen isotopic analysis of feathers. Oecologia 109: 142–148.CrossRefGoogle Scholar
  44. Hobson, K. A., R. T. Alisauskas & R. G. Clark, 1993. Stable nitrogen isotope enrichment in avian tissues due to fasting and nutritional stress: implications for isotopic analysis of diet. Condor 94: 181–188.CrossRefGoogle Scholar
  45. Hobson, K., A. Fisk, N. Karnovsky, M. Holst, J. Gagnon & M. Fortier, 2002. A stable isotope (δ13C, δ15N) model for the North Water food web: implications for evaluating trophodynamics and the flow of energy and contaminants. Deep-Sea Research Part II 49: 5131–5150.CrossRefGoogle Scholar
  46. Iglesias, J. I. P. & E. Navarro, 1991. Energetics of growth and reproduction in cockles (Cerastoderma edule): seasonal and age-dependent variations. Marine Biology 111: 359–368.CrossRefGoogle Scholar
  47. Kendall, C., 1998. Tracing nitrogen sources and cycling in catchments. In Kendall, C. & J. J. McDonnell (eds), Isotope Tracers in Catchment Hydrology. Elsevier Ltd., Amsterdam: 519–576.Google Scholar
  48. Kendall, C. & D. H. Doctor, 2003. Stable isotope applications in hydrologic studies. In Drever, J. I. (ed), Treatise on Geochemistry Vol. 5. Elsevier Ltd., Amsterdam: 319–364.Google Scholar
  49. Kreeger, D. A. & R. I. E. Newell, 2001. Seasonal utilization of different seston carbon sources by the ribbed mussel, Geukenseia demissa (Dillwyn) in a mid-Atlantic salt marsh. Journal of Experimental Marine Biology and Ecology 260: 71–91.PubMedCrossRefGoogle Scholar
  50. Libby, W. F., R. Berger, J. F. Mead, G. V. Alexander & J. F. Ross, 1964. Replacement rates for human tissue from atmospheric radiocarbon. Science 146: 1170–1172.PubMedCrossRefGoogle Scholar
  51. Livingstone, D. R. & S. V. Farrar, 1984. Tissue and subcellular distribution of enzyme activities of mixed-function oxygenase and benzo(a) pyrene metabolism in the common mussel Mytilus edulis L. Science of the Total Environment 39: 209–235.CrossRefGoogle Scholar
  52. Lombraña, M., P. Suárez & F. San Juan, 2005. Two forms of a-amylase in mantle tissue of Mytilus galloprovincialis: purification and molecular properties of form II. Comparative and Biochemical Physiology B 142: 56–66.CrossRefGoogle Scholar
  53. Lorrain, A., Y. Paulet, L. Chauvaud, N. Savoye, A. Donval & C. Saout, 2002. Differential δ13C and δ15N signatures among scallop tissues: implications for ecology and physiology. Journal of Experimental Marine Biology and Ecology 275: 47–61.CrossRefGoogle Scholar
  54. Lubet, P., P. Herlin, M. Mathieu & F. Collin, 1978. Tissue de réserve et cycle sexuel chez les Lamellibranches. Haliotis 7: 59–62.Google Scholar
  55. Mann, K., 1988. Production and use of detritus in various freshwater, estuarine and coastal marine ecosystems. Limnology Oceanography 33: 910–930.CrossRefGoogle Scholar
  56. McArdle, B. H. & M. J. Anderson, 2001. Fitting multivariate models to community data: a comment on distance based redundancy analysis. Ecology 82: 290–297.CrossRefGoogle Scholar
  57. McCutchan, J. H. Jr., W. M. Lewis Jr., C. Kendall & C. C. McGrath, 2003. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102: 378–390.CrossRefGoogle Scholar
  58. McQuaid, C. & T. Lindsay, 2000. Effect of wave exposure on growth and mortality rates of the mussel Perna perna: bottom-up regulation of intertidal populations. Marine Ecology Progress Series 206: 147–154.CrossRefGoogle Scholar
  59. Minagawa, M. & E. Wada, 1984. Stepwise enrichment of 15N along food chains: further evidence and the relation between 15N and animal age. Geochimica Cosmochimica Acta 8: 1135–1140.CrossRefGoogle Scholar
  60. Murry, B. A., J. M. Farrell, M. A. Teece & P. M. Smyntek, 2006. Effect of lipid extraction on the interpretation of fish community trophic relationships determined by stable carbon and nitrogen isotopes. Canadian Journal of Fisheries and Aquatic Science 63: 2167–2172.CrossRefGoogle Scholar
  61. Nagy, K. A., 1987. Field metabolic rate and food requirement scaling in mammals and birds. Ecological Monographs 57: 111–128.CrossRefGoogle Scholar
  62. Navarro, E., J. I. P. Iglesias, A. Perez, U. Labarta & R. Beiras, 1991. The physiological energetics of mussels (Mytilus galloprovincialis Lmk) from different cultivation rafts in the Rfa de Arosa (Galicia, N.W. Spain). Aquaculture 94: 197–212.CrossRefGoogle Scholar
  63. Newell, R. & J. G. Field, 1983. The contribution of bacteria and detritus to carbon and nitrogen flow in a benthic community. Marine Biology Letters 4: 23–36.Google Scholar
  64. Newell, R. I. E. & S. J. Jordan, 1983. Preferential ingestion of organic material by the American oyster Crassostrea virginica. Marine Ecology Progress Series 13: 47–53.CrossRefGoogle Scholar
  65. Newell, R. C., S. E. Shumway, T. L. Cucci & R. Selvin, 1989. The effects of natural seston particle size and type of feeding rates, feeding selectivity and food resource availability for the mussel Mytilus edulis Linneaus, 1758 at bottom culture sites in Maine. Journal of Shellfish Research 8: 187–196.Google Scholar
  66. Oelbermann, K. & S. Scheu, 2002. Stable isotope enrichment (δ15N and δ13C) in a generalist predator (Pardosa lugubris, Araneae: Lycosidae): effects of prey quality. Oecologia 130: 337–344.CrossRefGoogle Scholar
  67. Olive, P. J. W., J. K. Pinnegar, N. V. C. Polunin, G. Richards & R. Welch, 2003. Isotope trophic-step fractionation: a dynamic equilibrium model. Journal of Animal Ecology 72: 608–617.CrossRefGoogle Scholar
  68. Peterson, C. H., 1983. A concept of quantitative reproductive senility: application to the hard clam, Mercenaria mercenaria (L.). Oecologia 58: 164–168.CrossRefGoogle Scholar
  69. Prins, T. C., A. C. Smaal & A. J. Pouwer, 1991. Selective ingestion of phytoplankton by the bivalves Mytilus edulis L. and Cerastoderma edule (L.). Hydrobiological Bulletin 25: 93–100.CrossRefGoogle Scholar
  70. Ram, J. L., G. W. Crawford, J. U. Walker, J. J. Mojares, N. Patel, P. P. Fong & K. Kyozuka, 1993. Spawning in the zebra mussel (Dreissena polymorpha): activation by internal or external application of serotonin. Journal of Experimental Zoology 265: 587–598.PubMedCrossRefGoogle Scholar
  71. Rouillon, G. & E. Navarro, 2003. Differential utilization of species of phytoplankton by the mussel Mytilus edulis. Acta Oecologica 24: S299–S305.CrossRefGoogle Scholar
  72. Russel-Hunter, W. D., 1970. Aquatic productivity: an introduction to some basic aspects of biological oceanography and limnology. MacMillan Co., New York, NY: 352.Google Scholar
  73. Schmidt, O., C. M. Scrimgeour & J. P. Curry, 1999. Carbon and nitrogen stable isotope ratios in body tissue and mucus of feeding and fasting earthworms (Lumbricus festivus). Oecologia 118: 9–15.CrossRefPubMedGoogle Scholar
  74. Schwarcz, H. P., 1991. Some theoretical aspects of isotope paleodiet studies. Journal of Archaeological Science 18: 261–275.CrossRefGoogle Scholar
  75. Sholto-Douglas, A. D., J. G. Field, A. G. James & N. J. van der Merwe, 1991. 13C/12C and 15N/14N isotope ratios in the Southern Benguela Ecosystem: indicators of food web relationships among different size-classes of plankton and pelagic fish; differences between fish muscle and bone collagen tissues. Marine Ecology Progress Series 78: 23–31.CrossRefGoogle Scholar
  76. Shumway, S. E., T. L. Cucci, R. C. Newell & C. M. Yentsch, 1985. Particle selection, ingestion and absorption in filter-feeding bivalves. Journal of Experimental Marine Biology and Ecology 91: 77–92.CrossRefGoogle Scholar
  77. Sotiropoulos, M., W. Tonn & L. Wassenaar, 2004. Effects of lipid extraction on stable carbon and nitrogen isotope analyses of fish tissues: potential consequences for food web studies. Ecology of Freshwater Fish 13: 155–160.CrossRefGoogle Scholar
  78. Stuart, V., M. I. Lucas & R. C. Newell, 1981. Heterotrophic utilization of particulate matter from the kelp Laminaria pallida. Marine Ecology Progress Series 4: 337–348.CrossRefGoogle Scholar
  79. Suárez, M. P., C. Alvarez, P. Molist & F. San Juan, 2005. Particular aspects of gonadal cycle and seasonal distribution of gametogenic stages of Mytilus galloprovincialis, cultured in the Estuary of Vigo. Journal of Shellfish Research 24: 531–540.Google Scholar
  80. Sukhotin, A. A. & H.-O. Pörtner, 2001. Age-dependence of metabolism in mussels Mytilus edulis (L.) from the White Sea. Journal of Experimental Marine Biology and Ecology 251: 53–72.CrossRefGoogle Scholar
  81. Sweeting, C. J., S. Jennings & N. V. C. Polunin, 2005. Variance in isotopic signatures as a descriptor of tissue turnover and degree of omnivory. Functional Ecology 19: 777–784.CrossRefGoogle Scholar
  82. Thompson, R. C. & J. E. Ballou, 1956. Studies of metabolic turnover with tritium as a tracer. V. The predominantly non-dynamic state of body constituents in the rat. Journal of Biological Chemistry 223: 795–809.PubMedGoogle Scholar
  83. Tieszen, L. L., T. W. Boutton, K. G. Tesdahl & N. A. Slade, 1983. Fractionation and turnover of stable carbon isotopes in animal tissues: implications for δ13C analysis of diet. Oecologia 57: 32–37.CrossRefGoogle Scholar
  84. Vahl, O., 1973. Efficiency of particle retention in Chlamys islandica (O.F. Müller). Astarte 6: 21–25.Google Scholar
  85. Valiela, I., 1995. Marine Ecological Processes, 2nd ed. Springer, New York, 686 pp.Google Scholar
  86. Vander Zanden, M. & J. Rasmussen, 2001. Variation in δ15N and δ13C trophic fractionation: implications for aquatic food web studies. Limnology and Oceanography 46: 2061–2066.CrossRefGoogle Scholar
  87. Vanderklift, M. A. & S. Ponsard, 2003. Sources of variation in consumer-diet δ15N enrichment: a meta-analysis. Oecologia 136: 169–182.PubMedCrossRefGoogle Scholar
  88. Vizzini, S. & A. Mazzola, 2003. Seasonal variations in the stable carbon and nitrogen isotope ratios (13C/12C and 15N/14N) of primary producers and consumers in a western Mediterranean coastal lagoon. Marine Biology 142: 1009–1018.Google Scholar
  89. Ward, J. E. & S. E. Shumway, 2004. Separating the grain from the chaff: particle selection in suspension-and deposit-feeding bivalves. Journal of Experimental Marine Biology and Ecology 300: 83–130.CrossRefGoogle Scholar
  90. Widdows, J., P. Fieth & C. Worrall, 1979. Relationships between seston, available food and feeding activity in the common mussel Mytilus edulis. Marine Biology 50: 195–207.CrossRefGoogle Scholar
  91. Wong, W. & S. G. Cheung, 1999. Feeding behaviour of the green mussel, Perna viridis (L.): responses to variation in seston quantity and quantity. Journal of Experimental Marine Biology and Ecology 236: 191–207.CrossRefGoogle Scholar
  92. Young, R. T., 1945. Stimulation of spawning in the mussel (Mytilus californianus). Ecology 26: 58–69.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of Zoology & Entomology, Coastal Research GroupRhodes UniversityGrahamstownSouth Africa

Personalised recommendations