Advertisement

Hydrobiologia

, Volume 632, Issue 1, pp 297–308 | Cite as

Effects of fixation on freshwater invertebrate carbon and nitrogen isotope composition and its arithmetic correction

  • M. Ventura
  • E. Jeppesen
Primary research paper

Abstract

Retrospective investigations using carbon and nitrogen stable isotope composition of archived material have a great potential for describing past effects of anthropogenic ecosystem alterations or natural shifts in ecosystems. In this study, we examined the effects of two commonly used preservation substances of freshwater invertebrates, ethanol and lugol, on δ13C and δ15N of various planktonic and benthic taxa. For both isotopes, the average effect of fixation in ethanol was stronger than in lugol, and the effects on δ13C were stronger than on δ15N (average ± SD: 1.18 ± 0.94 and −0.47 ± 0.99 for δ13C ethanol and lugol fixed samples, respectively, and 0.39 ± 0.68 and 0.17 ± 0.77 for δ15N, respectively). The changes in the isotopic composition were not dependent on the initial isotopic composition of each taxon, but were related with concomitant changes in the carbon or nitrogen content. Application of a mass balance correction equation to the fixed samples resulted in a significantly lower average effect of fixation in ethanol (0.01 ± 0.59 and 0.44 ± 0.65 for δ15N and δ13C, respectively), while corrections had little effect for lugol fixed samples (0.24 ± 0.53 and −0.39 ± 0.85, respectively). For both isotopes and fixatives, corrections resulted in linear relationships between fixed vs. control samples, with slopes and intercepts not significantly different from 1 and 0, respectively. Therefore, mass balance correction of stable isotopes in fixed invertebrates is recommended for minimising the effects of fixation.

Keywords

Fixation Preservation Correction Carbon isotopes Nitrogen isotopes Invertebrates 

Notes

Acknowledgments

We are grateful to D. Harris at the University of California for stable isotope analysis. K. Jensen, K. L. Thomsen and J. Stougaard-Pedersen are acknowledged for their assistance to sample collection. We are grateful to T. Buchaca, C. Sweeting, C. Harrod and an anonymous referee for their very constructive comments on the manuscript. A. M. Poulsen assisted in manuscript editing. MV was supported by a Marie Curie post-doctoral grant (MEIF-CT-2005-010554) and a Juan de la Cierva and Ramon y Cajal grant (Spanish Ministry of Education and Science). We also acknowledge the EU EUROLIMPACS project (GOCE-CT-2003-505540) and “CLEAR” (a Villum Kann Rasmussen Centre of Excellence Project).

Supplementary material

10750_2009_9852_MOESM1_ESM.doc (108 kb)
(DOC 107 kb)

References

  1. Barrow, L. M., K. A. Bjorndal, et al., 2008. Effects of preservation method on stable carbon and nitrogen isotope values. Physiological and Biochemical Zoology 81: 688–693.PubMedCrossRefGoogle Scholar
  2. Bosley, K. L. & S. C. Wainright, 1999. Effects of preservatives and acidification on the stable isotope ratios (N-15:N-14, C-13:C-12) of two species of marine animals. Canadian Journal of Fisheries and Aquatic Sciences 56: 2181–2185.CrossRefGoogle Scholar
  3. Bugoni, L., R. A. R. McGill, et al., 2008. Effects of preservation methods on stable isotope signatures in bird tissues. Rapid Communications in Mass Spectrometry 22: 2457–2462.PubMedCrossRefGoogle Scholar
  4. Chandra, S., M. J. Vander Zanden, A. C. Heyvaert, B. C. Richards, B. C. Allen & C. R. Goldman, 2005. The effects of cultural eutrophication on the coupling between pelagic primary producers and benthic consumers. Limnology and Oceanography 50: 1368–1376.CrossRefGoogle Scholar
  5. Chasar, L. C., J. P. Chanton, C. C. Koenig & F. C. Coleman, 2005. Evaluating the effect of environmental disturbance on the trophic structure of Florida Bay, USA: multiple stable isotope analyses of contemporary and historical specimens. Limnology and Oceanography 50: 1059–1072.Google Scholar
  6. DeNiro, M. J. & S. Epstein, 1978. Influence of diet on the distribution of carbon isotopes in animals. Geochimica et Cosmochimica Acta 42: 495–506.CrossRefGoogle Scholar
  7. Edwards, M. S., T. F Turner & Z. D. Sharp, 2002. Short- and long-term effects of fixation and preservation on stable isotope values (delta C-13, delta N-15, delta S-34) of fluid-preserved museum specimens. Copeia 1106–1112.Google Scholar
  8. Feuchtmayr, H. & J. Grey, 2003. Effect of preparation and preservation procedures on carbon and nitrogen stable isotope determinations from zooplankton. Rapid Communications in Mass Spectrometry 17: 2605–2610.PubMedCrossRefGoogle Scholar
  9. Fry, B., D. M. Baltz, M. C. Benfield, J. W. Fleeger, A. Gace, H. L. Haas & Z. J. Quinones-Rivera, 2003. Stable isotope indicators of movement and residency for brown shrimp (Farfantepenaeus aztecus) in coastal Louisiana marshscapes. Estuaries 26: 82–97.CrossRefGoogle Scholar
  10. Garcia-Berthou, E., C. Alcaraz, Q. Pou-Rovira, L. Zamora & G. Coenders, 2005. Introduction pathways and establishment rates of invasive aquatic species in Europe. Canadian Journal of Fisheries and Aquatic Sciences 62: 453–463.CrossRefGoogle Scholar
  11. Gloutney, M. L. & K. A. Hobson, 1998. Field preservation techniques for the analysis of stable-carbon and nitrogen isotope ratios in eggs. Journal of Field Ornithology 69: 223–227.Google Scholar
  12. Gorokhova, E., S. Hansson, H. Hoglander & C. M. Andersen, 2005. Stable isotopes show food web changes after invasion by the predatory cladoceran Cercopagis pengoi in a Baltic Sea bay. Oecologia 143: 251–259.PubMedCrossRefGoogle Scholar
  13. Hansen A.-M., E. Jeppesen, S Bosselmann & Andersen P, (1992). Zooplankton i søer – metoder og artsliste. Miljøprojekt nr. 205. Miljøministeriet, Miljøstyrelsen. (In Danish).Google Scholar
  14. Jeppesen, E., M. Meerhoff, B. A. Jacobsen, R. S. Hansen, J. P. Jensen, T. L. Lauridsen, N. Mazzeo & W. C. Branco, 2007. Restoration of shallow lakes by nutrient control and biomanipulation—the successful strategy varies with lake size and climate. Hydrobiologia 581: 269–285.CrossRefGoogle Scholar
  15. Kaehler, S. & E. A. Pakhomov, 2001. Effects of storage and preservation on the delta C-13 and delta N-15 signatures of selected marine organisms. Marine Ecology-Progress Series 219: 299–304.CrossRefGoogle Scholar
  16. Kelly, B., J. B. Dempson & M. Power, 2006. The effects of preservation on fish tissue stable isotope signatures. Journal of Fish Biology 69: 1595–1611.CrossRefGoogle Scholar
  17. Kiljunen, M., J. Grey, T. Sinisalo, C. Harrod, H. Immonen & R. I. Jones, 2006. A revised model for lipid-normalizing δ13C values from aquatic organisms, with implications for isotope mixing models. Journal of Applied Ecology 43: 1213–1222.CrossRefGoogle Scholar
  18. Logan, J. M., T. D. Jardine, et al., 2008. Lipid corrections in carbon and nitrogen stable isotope analyses: comparison of chemical extraction and modelling methods. Journal of Animal Ecology 77: 838–846.PubMedCrossRefGoogle Scholar
  19. Mcconnaughey, T. & C. P. Mcroy, 1979. Food-web structure and the fractionation of carbon isotopes in the Bering Sea. Marine Biology 53(3): 257–262.CrossRefGoogle Scholar
  20. Mill, A. C., C. J. Sweeting, C. Barnes, S. H. Al-Habsi & M. A. MacNeil, 2008. Mass-spectrometer bias in stable isotope ecology. Limnology and Oceanography: Methods 6: 34–39.Google Scholar
  21. Mullin, M. M., G. H. Rau & R. W. Eppley, 1984. Stable nitrogen isotopes in zooplankton—some geographic and temporal variations in the North Pacific. Limnology and Oceanography 29: 1267–1273.Google Scholar
  22. O’Brien, D. M., M. L. Fogel & C. L. Boggs, 2002. Renewable and nonrenewable resources: amino acid turnover and allocation to reproduction in Lepidoptera. Proceedings of the National Academy of Sciences of the United States of America 99: 4413–4418.PubMedCrossRefGoogle Scholar
  23. Peterson, B. J. & B. Fry, 1987. Stable isotopes in ecosystem studies. Annual Review of Ecology and Systematics 18: 293–320.CrossRefGoogle Scholar
  24. Post, D. M., 2002. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83: 703–718.Google Scholar
  25. Post, D. M., C. A. Layman, D. A. Arrington, G. Takimoto, J. Quattrochi & C. G. Montaña, 2007. Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 152: 179–189.PubMedCrossRefGoogle Scholar
  26. Sarakinos, H. C., M. L. Johnson & M. J. Vander Zanden, 2002. A synthesis of tissue-preservation effects on carbon and nitrogen stable isotope signatures. Canadian Journal of Zoology 80: 381–387.CrossRefGoogle Scholar
  27. Smyntek, P. M., M. A. Teece, K. L. Schulz & S. J. Thackeray, 2007. A standard protocol for stable isotope analysis of zooplankton in aquatic food web research using mass balance correction models. Limnology and Oceanography 52: 2135–2146.Google Scholar
  28. Sweeting, C. J., N. V. C. Polunin & S. Jennings, 2004. Tissue and fixative dependent shifts of delta C-13 and delta N-15 in preserved ecological material. Rapid Communications in Mass Spectrometry 18: 2587–2592.PubMedCrossRefGoogle Scholar
  29. Sweeting, C. J., N. V. C. Polunin & S. Jennings, 2006. Effects of chemical lipid extraction and arithmetic lipid correction on stable isotope ratios of fish tissues. Rapid Communications in Mass Spectrometry 20: 595–601.PubMedCrossRefGoogle Scholar
  30. Syväranta, J., S. Vesala, M. Rask, J. Ruuhijärvi & R. I. Jones, 2008. Evaluating the utility of stable isotope analyses of archived freshwater sample materials. Hydrobiologia 600: 121–130.CrossRefGoogle Scholar
  31. Vadeboncoeur, Y., E. Jeppesen, M. J. Vander Zanden, H.-H. Scierup, K. Christoffersen & D. M. Lodge, 2003. From Greenland to green lakes: cultural eutrophication and the loss of benthic pathways in lakes. Limnology and Oceanography 48: 1408–1418.CrossRefGoogle Scholar
  32. Vander Zanden, M. J. & J. B. Rasmussen, 2001. Variation in d15N and d13C trophic fractionation: Implications for aquatic food web studies. Limnology and Oceanography 46: 2061–2066.CrossRefGoogle Scholar
  33. Vander Zanden, M. J., C. R. Goldman, S. Chandra, B. C. Allen, J. E. Reuter & C. R. Goldman, 2003. Historical food web structure and restoration of native aquatic communities in the Lake Tahoe (California–Nevada) basin. Ecosystems 6: 274–288.CrossRefGoogle Scholar
  34. Vander Zanden, M. J., Y. Vadeboncoeur, M. W. Diebel & E. Jeppesen, 2005. Primary consumer stable nitrogen isotones as indicators of nutrient source. Environmental Science and Technology 39: 7509–7515.PubMedCrossRefGoogle Scholar
  35. Ventura, M., 2006. Linking biochemical and elemental composition of freshwater and marine crustacean zooplankton. Marine Ecology Progress Series 327: 233–246.CrossRefGoogle Scholar
  36. Ventura, M. & J. Catalan, 2005. Reproduction as one of the main causes of temporal variability in the elemental composition of zooplankton. Limnology and Oceanography 50: 2043–2056.CrossRefGoogle Scholar
  37. Ventura, M. & J. Catalan, 2008. Incorporating life histories and diet quality in stable isotope interpretations of crustacean zooplankton. Freshwater Biology 53: 1453–1469.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.National Environmental Research InstituteAarhus UniversitySilkeborgDenmark
  2. 2.Limnology group (CSIC-UB), Centre for Advanced Studies of Blanes (CEAB)Spanish Research Council (CSIC)Blanes, Girona, CataloniaSpain
  3. 3.Institut de Recerca de l’AiguaUniversitat de BarcelonaBarcelona, CataloniaSpain
  4. 4.Institute of Plant BiologyAarhus UniversityAarhus CDenmark

Personalised recommendations