Skip to main content
Log in

Effects of fixation on freshwater invertebrate carbon and nitrogen isotope composition and its arithmetic correction

  • Primary research paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Retrospective investigations using carbon and nitrogen stable isotope composition of archived material have a great potential for describing past effects of anthropogenic ecosystem alterations or natural shifts in ecosystems. In this study, we examined the effects of two commonly used preservation substances of freshwater invertebrates, ethanol and lugol, on δ13C and δ15N of various planktonic and benthic taxa. For both isotopes, the average effect of fixation in ethanol was stronger than in lugol, and the effects on δ13C were stronger than on δ15N (average ± SD: 1.18 ± 0.94 and −0.47 ± 0.99 for δ13C ethanol and lugol fixed samples, respectively, and 0.39 ± 0.68 and 0.17 ± 0.77 for δ15N, respectively). The changes in the isotopic composition were not dependent on the initial isotopic composition of each taxon, but were related with concomitant changes in the carbon or nitrogen content. Application of a mass balance correction equation to the fixed samples resulted in a significantly lower average effect of fixation in ethanol (0.01 ± 0.59 and 0.44 ± 0.65 for δ15N and δ13C, respectively), while corrections had little effect for lugol fixed samples (0.24 ± 0.53 and −0.39 ± 0.85, respectively). For both isotopes and fixatives, corrections resulted in linear relationships between fixed vs. control samples, with slopes and intercepts not significantly different from 1 and 0, respectively. Therefore, mass balance correction of stable isotopes in fixed invertebrates is recommended for minimising the effects of fixation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barrow, L. M., K. A. Bjorndal, et al., 2008. Effects of preservation method on stable carbon and nitrogen isotope values. Physiological and Biochemical Zoology 81: 688–693.

    Article  PubMed  Google Scholar 

  • Bosley, K. L. & S. C. Wainright, 1999. Effects of preservatives and acidification on the stable isotope ratios (N-15:N-14, C-13:C-12) of two species of marine animals. Canadian Journal of Fisheries and Aquatic Sciences 56: 2181–2185.

    Article  Google Scholar 

  • Bugoni, L., R. A. R. McGill, et al., 2008. Effects of preservation methods on stable isotope signatures in bird tissues. Rapid Communications in Mass Spectrometry 22: 2457–2462.

    Article  PubMed  CAS  Google Scholar 

  • Chandra, S., M. J. Vander Zanden, A. C. Heyvaert, B. C. Richards, B. C. Allen & C. R. Goldman, 2005. The effects of cultural eutrophication on the coupling between pelagic primary producers and benthic consumers. Limnology and Oceanography 50: 1368–1376.

    Article  CAS  Google Scholar 

  • Chasar, L. C., J. P. Chanton, C. C. Koenig & F. C. Coleman, 2005. Evaluating the effect of environmental disturbance on the trophic structure of Florida Bay, USA: multiple stable isotope analyses of contemporary and historical specimens. Limnology and Oceanography 50: 1059–1072.

    CAS  Google Scholar 

  • DeNiro, M. J. & S. Epstein, 1978. Influence of diet on the distribution of carbon isotopes in animals. Geochimica et Cosmochimica Acta 42: 495–506.

    Article  CAS  Google Scholar 

  • Edwards, M. S., T. F Turner & Z. D. Sharp, 2002. Short- and long-term effects of fixation and preservation on stable isotope values (delta C-13, delta N-15, delta S-34) of fluid-preserved museum specimens. Copeia 1106–1112.

  • Feuchtmayr, H. & J. Grey, 2003. Effect of preparation and preservation procedures on carbon and nitrogen stable isotope determinations from zooplankton. Rapid Communications in Mass Spectrometry 17: 2605–2610.

    Article  PubMed  CAS  Google Scholar 

  • Fry, B., D. M. Baltz, M. C. Benfield, J. W. Fleeger, A. Gace, H. L. Haas & Z. J. Quinones-Rivera, 2003. Stable isotope indicators of movement and residency for brown shrimp (Farfantepenaeus aztecus) in coastal Louisiana marshscapes. Estuaries 26: 82–97.

    Article  Google Scholar 

  • Garcia-Berthou, E., C. Alcaraz, Q. Pou-Rovira, L. Zamora & G. Coenders, 2005. Introduction pathways and establishment rates of invasive aquatic species in Europe. Canadian Journal of Fisheries and Aquatic Sciences 62: 453–463.

    Article  Google Scholar 

  • Gloutney, M. L. & K. A. Hobson, 1998. Field preservation techniques for the analysis of stable-carbon and nitrogen isotope ratios in eggs. Journal of Field Ornithology 69: 223–227.

    Google Scholar 

  • Gorokhova, E., S. Hansson, H. Hoglander & C. M. Andersen, 2005. Stable isotopes show food web changes after invasion by the predatory cladoceran Cercopagis pengoi in a Baltic Sea bay. Oecologia 143: 251–259.

    Article  PubMed  Google Scholar 

  • Hansen A.-M., E. Jeppesen, S Bosselmann & Andersen P, (1992). Zooplankton i søer – metoder og artsliste. Miljøprojekt nr. 205. Miljøministeriet, Miljøstyrelsen. (In Danish).

  • Jeppesen, E., M. Meerhoff, B. A. Jacobsen, R. S. Hansen, J. P. Jensen, T. L. Lauridsen, N. Mazzeo & W. C. Branco, 2007. Restoration of shallow lakes by nutrient control and biomanipulation—the successful strategy varies with lake size and climate. Hydrobiologia 581: 269–285.

    Article  CAS  Google Scholar 

  • Kaehler, S. & E. A. Pakhomov, 2001. Effects of storage and preservation on the delta C-13 and delta N-15 signatures of selected marine organisms. Marine Ecology-Progress Series 219: 299–304.

    Article  CAS  Google Scholar 

  • Kelly, B., J. B. Dempson & M. Power, 2006. The effects of preservation on fish tissue stable isotope signatures. Journal of Fish Biology 69: 1595–1611.

    Article  CAS  Google Scholar 

  • Kiljunen, M., J. Grey, T. Sinisalo, C. Harrod, H. Immonen & R. I. Jones, 2006. A revised model for lipid-normalizing δ13C values from aquatic organisms, with implications for isotope mixing models. Journal of Applied Ecology 43: 1213–1222.

    Article  CAS  Google Scholar 

  • Logan, J. M., T. D. Jardine, et al., 2008. Lipid corrections in carbon and nitrogen stable isotope analyses: comparison of chemical extraction and modelling methods. Journal of Animal Ecology 77: 838–846.

    Article  PubMed  Google Scholar 

  • Mcconnaughey, T. & C. P. Mcroy, 1979. Food-web structure and the fractionation of carbon isotopes in the Bering Sea. Marine Biology 53(3): 257–262.

    Article  CAS  Google Scholar 

  • Mill, A. C., C. J. Sweeting, C. Barnes, S. H. Al-Habsi & M. A. MacNeil, 2008. Mass-spectrometer bias in stable isotope ecology. Limnology and Oceanography: Methods 6: 34–39.

    CAS  Google Scholar 

  • Mullin, M. M., G. H. Rau & R. W. Eppley, 1984. Stable nitrogen isotopes in zooplankton—some geographic and temporal variations in the North Pacific. Limnology and Oceanography 29: 1267–1273.

    Google Scholar 

  • O’Brien, D. M., M. L. Fogel & C. L. Boggs, 2002. Renewable and nonrenewable resources: amino acid turnover and allocation to reproduction in Lepidoptera. Proceedings of the National Academy of Sciences of the United States of America 99: 4413–4418.

    Article  PubMed  CAS  Google Scholar 

  • Peterson, B. J. & B. Fry, 1987. Stable isotopes in ecosystem studies. Annual Review of Ecology and Systematics 18: 293–320.

    Article  Google Scholar 

  • Post, D. M., 2002. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83: 703–718.

    Google Scholar 

  • Post, D. M., C. A. Layman, D. A. Arrington, G. Takimoto, J. Quattrochi & C. G. Montaña, 2007. Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 152: 179–189.

    Article  PubMed  Google Scholar 

  • Sarakinos, H. C., M. L. Johnson & M. J. Vander Zanden, 2002. A synthesis of tissue-preservation effects on carbon and nitrogen stable isotope signatures. Canadian Journal of Zoology 80: 381–387.

    Article  Google Scholar 

  • Smyntek, P. M., M. A. Teece, K. L. Schulz & S. J. Thackeray, 2007. A standard protocol for stable isotope analysis of zooplankton in aquatic food web research using mass balance correction models. Limnology and Oceanography 52: 2135–2146.

    CAS  Google Scholar 

  • Sweeting, C. J., N. V. C. Polunin & S. Jennings, 2004. Tissue and fixative dependent shifts of delta C-13 and delta N-15 in preserved ecological material. Rapid Communications in Mass Spectrometry 18: 2587–2592.

    Article  PubMed  CAS  Google Scholar 

  • Sweeting, C. J., N. V. C. Polunin & S. Jennings, 2006. Effects of chemical lipid extraction and arithmetic lipid correction on stable isotope ratios of fish tissues. Rapid Communications in Mass Spectrometry 20: 595–601.

    Article  PubMed  CAS  Google Scholar 

  • Syväranta, J., S. Vesala, M. Rask, J. Ruuhijärvi & R. I. Jones, 2008. Evaluating the utility of stable isotope analyses of archived freshwater sample materials. Hydrobiologia 600: 121–130.

    Article  CAS  Google Scholar 

  • Vadeboncoeur, Y., E. Jeppesen, M. J. Vander Zanden, H.-H. Scierup, K. Christoffersen & D. M. Lodge, 2003. From Greenland to green lakes: cultural eutrophication and the loss of benthic pathways in lakes. Limnology and Oceanography 48: 1408–1418.

    Article  Google Scholar 

  • Vander Zanden, M. J. & J. B. Rasmussen, 2001. Variation in d15N and d13C trophic fractionation: Implications for aquatic food web studies. Limnology and Oceanography 46: 2061–2066.

    Article  CAS  Google Scholar 

  • Vander Zanden, M. J., C. R. Goldman, S. Chandra, B. C. Allen, J. E. Reuter & C. R. Goldman, 2003. Historical food web structure and restoration of native aquatic communities in the Lake Tahoe (California–Nevada) basin. Ecosystems 6: 274–288.

    Article  Google Scholar 

  • Vander Zanden, M. J., Y. Vadeboncoeur, M. W. Diebel & E. Jeppesen, 2005. Primary consumer stable nitrogen isotones as indicators of nutrient source. Environmental Science and Technology 39: 7509–7515.

    Article  PubMed  CAS  Google Scholar 

  • Ventura, M., 2006. Linking biochemical and elemental composition of freshwater and marine crustacean zooplankton. Marine Ecology Progress Series 327: 233–246.

    Article  CAS  Google Scholar 

  • Ventura, M. & J. Catalan, 2005. Reproduction as one of the main causes of temporal variability in the elemental composition of zooplankton. Limnology and Oceanography 50: 2043–2056.

    Article  CAS  Google Scholar 

  • Ventura, M. & J. Catalan, 2008. Incorporating life histories and diet quality in stable isotope interpretations of crustacean zooplankton. Freshwater Biology 53: 1453–1469.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to D. Harris at the University of California for stable isotope analysis. K. Jensen, K. L. Thomsen and J. Stougaard-Pedersen are acknowledged for their assistance to sample collection. We are grateful to T. Buchaca, C. Sweeting, C. Harrod and an anonymous referee for their very constructive comments on the manuscript. A. M. Poulsen assisted in manuscript editing. MV was supported by a Marie Curie post-doctoral grant (MEIF-CT-2005-010554) and a Juan de la Cierva and Ramon y Cajal grant (Spanish Ministry of Education and Science). We also acknowledge the EU EUROLIMPACS project (GOCE-CT-2003-505540) and “CLEAR” (a Villum Kann Rasmussen Centre of Excellence Project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ventura.

Additional information

Handling editor: M. Power

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 107 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ventura, M., Jeppesen, E. Effects of fixation on freshwater invertebrate carbon and nitrogen isotope composition and its arithmetic correction. Hydrobiologia 632, 297–308 (2009). https://doi.org/10.1007/s10750-009-9852-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-009-9852-3

Keywords

Navigation