Advertisement

Hydrobiologia

, Volume 630, Issue 1, pp 127–138 | Cite as

Macrophyte community structure and species occurrence in relation to environmental determinants in the ephemeral aquatic habitats of Gavdos, Greece

  • I. N. Vogiatzakis
  • G. Kazakis
  • D. Ghosn
Primary research paper

Abstract

The aims of this study were to explore the environmental factors that determine the distribution of plant communities in temporary rock pools and provide a quantitative analysis of vegetation–environment relationships for five study sites on the island of Gavdos, southwest of Crete, Greece. Data from 99 rock pools were collected and analysed using Two-Way Indicator Species Analysis (TWINSPAN), Detrended Correspondence Analysis (DCA) and Canonical Correspondence Analysis (CCA) to identify the principal communities and environmental gradients that are linked to community distribution. A total of 46 species belonging to 21 families were recorded within the study area. The dominant families were Labiatae, Gramineae and Compositae while therophytes and chamaephytes were the most frequent life forms. The samples were classified into six community types using TWINSPAN, which were also corroborated by CCA analysis. The principal gradients for vegetation distribution, identified by CCA, were associated with water storage and water retention ability, as expressed by pool perimeter and water depth. Generalised Additive Models (GAMs) were employed to identify responses of four dominant rock pool species to water depth. The resulting species response curves showed niche differentiation in the cases of Callitriche pulchra and Tillaea vaillantii and revealed competition between Zannichellia pedunculata and Chara vulgaris. The use of classification in combination with ordination techniques resulted in a good discrimination between plant communities. Generalised Additive Models are a powerful tool in investigating species response curves to environmental gradients. The methodology adopted can be employed for improving baseline information on plant community ecology and distribution in Mediterranean ephemeral pools.

Keywords

CCA Crete Generalised Additive Models Ordination Rock pools Species response curves 

Notes

Acknowledgements

This research was funded by the LIFE Nature Programme Actions for the conservation of Mediterranean Temporary Ponds in Crete (LIFE04NAT/GR/000105). We are grateful to Mrs. Christina Fournaraki, curator at the Herbarium of MAICh, for her help in species identification, and two anonymous reviewers whose comments resulted in an improved manuscript.

References

  1. Austin, M. P. & M. J. Gaywood, 1994. Current problems of environmental gradients and species response curves in relation to continuum theory. Journal of Vegetation Science 5: 473–482.CrossRefGoogle Scholar
  2. Bayly, I. A. E., 1997. Invertebrates of temporary waters in gnammas on granite outcrops in Western Australia. Journal of the Royal Society of Western Australia 80: 167–172.Google Scholar
  3. Bayly, I. A. E., 2002. The life of temporary waters in Australian gnammas (rock-holes). Verhandlungen der Internationalen Vereinigung fur Theoretische und Angewandte Limnologie 28: 1–8.Google Scholar
  4. Bergmeier, E., 2001. Seasonal pools in the vegetation of Gavdos (Greece)—in situ conservation required. Bocconea 13: 511–516.Google Scholar
  5. Bergmeier, E. & S. Abrahamczyk, 2008. Current and historical diversity and new records of wetland plants in Crete. Willdenowia 38: 433–453.CrossRefGoogle Scholar
  6. Bergmeier, E. & Th. Raus, 1999. Verbreitung und Einnischung von Arten der Isolto-Nanojuncetea in Griechenland. Mitteilungen des Badischen Landesvereins für Naturkunde und Naturschutz 17: 463–479.Google Scholar
  7. Bergmeier, E., R. Jahn & A. Jagel, 1997. Flora and Vegetation of Gavdos (Greece), the southernmost European island. I. Vascular flora and chorological relations. Candollea 52: 305–358.Google Scholar
  8. Bio, A. M. F., R. Alkemade & A. Barendregt, 1998. Determining alternative models for vegetation response analysis: a non-parametric approach. Journal of Vegetation Science 9: 5–17.CrossRefGoogle Scholar
  9. Blaustein, L. & S. S. Schwartz, 2001. Why study ecology in temporary pools? Israel Journal of Zoology 47: 303–312.CrossRefGoogle Scholar
  10. Céréghino, R., 2008. The ecology of European ponds: defining the characteristics of a neglected freshwater habitat. Hydrobiologia 597: 1–6.CrossRefGoogle Scholar
  11. Coudun, C. & J. C. Gegout, 2006. The derivation of species response curves with Gaussian logistic regression is sensitive to sampling intensity and curve characteristics. Ecological Modelling 199: 164–175.CrossRefGoogle Scholar
  12. Council of Europe, 1992. Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. Official Journal of the European Communities L 206: 7–50.Google Scholar
  13. De Bolos, O., R. M. Masalles, J. M. Ninot & J. Vigo, 1996. A survey on the vegetation of Cephalonia (Ionian islands). Phytocoenologia 26: 81–123.Google Scholar
  14. De Meester, L., S. Declerck, R. Stoks, G. Louette, F. Van De Meutter, T. De Bie, E. Michels & L. Brendonck, 2005. Ponds and pools as model systems in conservation biology, ecology and evolutionary biology. Aquatic Conservation: Marine and Freshwater Ecosystems 15: 715–725.CrossRefGoogle Scholar
  15. Deil, U., 2005. A review on habitats, plant traits and vegetation of ephemeral wetlands—a global perspective. Phytocoenologia 35: 533–705.CrossRefGoogle Scholar
  16. Delipetrou, P., 2007. Monitoring Plan for the Habitat Vernal Pools in Cyprus. University of Athens, Athens (in Greek).Google Scholar
  17. Dimitriou, E., I. Karaouzas, N. Skoulikidis & I. Zacharias, 2006. Assessing the environmental status of Mediterranean temporary ponds in Greece. Annales de Limnologie-International Journal of Limnology 42: 33–41.CrossRefGoogle Scholar
  18. Grillas, P., P. Gauthier, N. Yavercovski & C. Perennou, 2004. Mediterranean Temporary Pools; Volume 1—Issues Relating to Conservation, Functioning and Management. Station Biologique de la Tour du Valat.Google Scholar
  19. Guisan, A., T. Edwards & T. Hastie, 2002. Generalised linear and generalised additive models in studies of species distribution: setting the scene. Ecological Modelling 157: 89–100.CrossRefGoogle Scholar
  20. Heikkinen, R. K., M. Luoto, M. Kuussaari & T. Toivonen, 2007. Modelling the distribution of a threatened butterfly: impacts of scale and statistical technique. Landscape and Urban Planning 79: 347–357.CrossRefGoogle Scholar
  21. Hill, M. O., 1979. TWINSPAN—A FORTRAN Program for Arranging Multivariate Data in Ordered Two Way Table by Classification of the Individuals and the Attributes. Cornell University, Department of Ecology and Systematics, Ithaca, New York.Google Scholar
  22. Horsak, M., 2006. Mollusc community patterns and species response curves along a mineral richness gradient: a case study in fens. Journal of Biogeography 33: 98–107.CrossRefGoogle Scholar
  23. Jahn, R. & P. Schönfelder, 1995. Exkursionflora für Kreta. Ulmer, Stuttgart.Google Scholar
  24. Jongman, R. H. G., C. J. F. ter Braak & O. F. R. van Tongeren (eds), 1987. Data Analysis in Community and Landscape Ecology. Pudoc, Wageningen.Google Scholar
  25. Keeley, J. E., 1999. Photosynthetic pathway diversity in a seasonal pool community. Functional Ecology 13: 106–118.CrossRefGoogle Scholar
  26. Krause, W., W. Ludwig & F. Seidel, 1963. Zur Kenntnis der Flora und Vegetation auf Serpentinstandorten des Balkans. 6. Vegetationsstudien in der Umgebung von Mantoudi (Euböa). Botanische Jahrbücher für Systematik 82: 337–403.Google Scholar
  27. Krieger, A., S. Porembski & W. Barthlott, 2003. Temporal dynamics of an ephemeral plant community: species turnover in seasonal rock pools on Ivorian inselbergs. Plant Ecology 167: 283–292.CrossRefGoogle Scholar
  28. Kruckeberg, A. R., 2002. Geology and Plant Life: The Effects of Landforms and Rock Types on Plants. University of Washington Press, Washington.Google Scholar
  29. Laurilla, A., 2000. Competitive ability and the co-existence of anuran larvae in freshwater rock-pools. Freshwater Biology 43: 161–174.CrossRefGoogle Scholar
  30. McCune, B. & M. J. Mefford, 1999. PC-ORD, Multivariate Analysis of Ecological Data. MJM Software, Glenden Beach.Google Scholar
  31. Müller, J. V. & U. Deil, 2005. The ephemeral vegetation of seasonal and semi-permanent ponds in tropical West Africa. Phytocoenologia 35: 327–388.CrossRefGoogle Scholar
  32. Oberdorfer, E., 1952. Beitrag zur Kenntnis der nordagaischen Kustenvegetation. Vegetatio 3: 329–349.Google Scholar
  33. Ott, S., U. Elders & H. M. Jahns, 1996. Vegetation of the rock-alvar of Gotland I. Microhabitats and succession. Nova Hedwigia 64: 433–470.Google Scholar
  34. Ott, S., E. Osenberg & H. M. Jahns, 1997. Vegetation of the rock-alvar of Gotland II. Microclimate of lichens in a rock habitat. Nova Hedwigia 64: 87–101.Google Scholar
  35. Phitos, D., A. Strid, S. Snogerup & W. Greuter (eds), 1996. The Red Data Book of Rare and Threatened Plants of Greece. WWF, Greece, Athens.Google Scholar
  36. Pinder, A. M., S. A. Halse, R. J. Shiel & J. M. Mcrae, 2000. Granite outcrop pools in south-western Australia: foci of diversification and refugia for aquatic invertebrates. Journal of the Royal Society of Western Australia 83: 149–161.Google Scholar
  37. Rackham, O. & J. Moody, 1996. The Making of the Cretan Landscape. Manchester University Press, Manchester.Google Scholar
  38. Raunkiaer, C., 1934. The Life Forms of Plants and Statistical Plant Geography. Oxford University Press, Oxford.Google Scholar
  39. Sarika-Hatzinikolaou, M., A. Yannitsaros & D. Babalonas, 2003. The macrophytic vegetation of seven aquatic ecosystems of Epirus (NW Greece). Phytocoenologia 35: 93–151.CrossRefGoogle Scholar
  40. Scholnick, D. A., 1994. Seasonal variation and diurnal fluctuations in ephemeral desert pools. Hydrobiologia 294: 111–116.CrossRefGoogle Scholar
  41. Spencer, M., S. S. Schwarz & L. Blaustein, 2002. Are there fine-scale spatial patterns in community similarity among temporary freshwater pools? Global Ecology and Biogeography 11: 71–78.CrossRefGoogle Scholar
  42. Srivastava, D. S., J. Kolasa, J. Bengtsson, A. Gonzalez, S. P. Lawler, T. E. Miller, P. Munguia, T. Romanuk, D. C. Schneider & M. K. Trzcinski, 2004. Are natural microcosms useful model systems for ecology? Trends in Ecology & Evolution 19: 379–384.CrossRefGoogle Scholar
  43. ter Braak, C. J. F. & P. Smilauer, 1998. CANOCO Reference Manual and User’s Guide to Canoco for Windows: Software for Canonical Community Ordination (Version 4). Microcomputer Power, Ithaca, NY, USA.Google Scholar
  44. Turland, N. J., L. Chilton & J. R. Press, 1993. Flora of the Cretan Area. Annotated Checklist and Atlas. HMSO, London.Google Scholar
  45. Vanschoenwinkel, B., C. De Vries, M. Seaman & I. Brendonck, 2007. The role of metacommunity processes in shaping invertebrate rock pool communities along a dispersal gradient. Oikos 116: 1255–1266.CrossRefGoogle Scholar
  46. Wessels, D. C. J. & B. Budel, 1989. A rock pool lichen community in Northern Transvaal, South Africa: composition and distribution patterns. The Lichenologist 21: 259–277.CrossRefGoogle Scholar
  47. Williams, D. D., 1987. The Ecology of Temporary Waters. Timber Press, Oregon.Google Scholar
  48. Zacharias, I., E. Dimitriou, A. Dekker & E. Dorsman, 2007. Overview of temporary ponds in the Mediterranean region: threats, management and conservation issues. Journal of Environmental Biology 28: 1–9.PubMedGoogle Scholar
  49. Zacharias, I., A. Parasidou, E. Bergmeier, G. Kehayias, E. Dimitriou & P. Dimopoulos, 2008. A “DPSIR” model for Mediterranean temporary ponds: European, national and local scale comparisons. Annales de Limnologie-International Journal of Limnology 44: 243–256.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Centre for Agri-Environmental ResearchSchool of Agriculture Policy and Development, University of ReadingReadingUK
  2. 2.Department of Environmental ManagementMediterranean Agronomic Institute of ChaniaChaniaGreece

Personalised recommendations