Advertisement

Hydrobiologia

, Volume 628, Issue 1, pp 165–175 | Cite as

Zooplankton–phytoplankton relationships in shallow subtropical versus temperate lakes Apopka (Florida, USA) and Trasimeno (Umbria, Italy)

  • Karl E. Havens
  • Antonia Concetta Elia
  • Maria Illuminata Taticchi
  • Rolland S. FultonIII
Primary research paper

Abstract

This study compares and contrasts the dynamics of phytoplankton, zooplankton, and nutrients in two of the largest shallow lakes in the USA (Lake Apopka, Florida) and Europe (Lago Trasimeno, Umbria, Italy) and considers particularly the biomass ratio of zooplankton to phytoplankton (BZ:BP) in relation to nutrient levels and in the context of data from other subtropical and temperate lakes. Lake Apopka is hypereutrophic with higher concentrations of total phosphorus (TP), nitrogen (TN), and nearly an order of magnitude higher BP than Lago Trasimeno. However, combined data from the two lakes can be fit to a single log–log regression model that explains 72% of the variability in BP based on TP. In contrast, BZ has a significant positive log–log relationship with TP only for Lago Trasimeno, and is much lower than expected based on the TP concentrations observed in Lake Apopka. Lake Apopka has a fish assemblage that includes high densities of gizzard shad (Dorosoma cepedianum) and threadfin shad (D. petenense), similar to other eutrophic Florida lakes that also have extreme low BZ. The ratio BZ:BP is below 0.01 in Lake Apopka, 10-fold lower than in Trasimeno and among the lowest values reported in the literature. Although stress of high water temperature and a greater proportion of inedible cyanobacteria may be contributing factors, the collective results support an emerging view that fish predation limits the biomass of crustacean zooplankton in subtropical lakes.

Keywords

Zooplankton Phytoplankton Shallow lakes Subtropical Fish predation 

Notes

Acknowledgment

The authors are grateful to two anonymous reviewers for providing helpful suggestions for revising an earlier draft of this article.

References

  1. Auer, B., U. Elzer & H. Arndt, 2004. Comparison of pelagic food webs in lakes along a trophic gradient and with seasonal aspects: influence of resource and predation. Journal of Plankton Research 26: 697–709.CrossRefGoogle Scholar
  2. Battoe, L. E., M. F. Coveney, E. J. Lowe & D. L. Stites, 1999. The role of phosphorus reduction and export in the restoration of Lake Apopka, Florida. In Reddy, K. R., G. A. O’Conner & C. L. Schelske (eds), Phosphorus Biogeochemistry of Subtropical Ecosystems. Lewis Publishers, Boca Raton, FL: 511–526.Google Scholar
  3. Blancher, E. C., 1984. Zooplankton–trophic state relationships in some north and central Florida lakes. Hydrobiologia 109: 251–263.CrossRefGoogle Scholar
  4. Brooks, J. L. & S. I. Dodson, 1965. Predation, body size and the composition of plankton. Science 150: 28–35.PubMedCrossRefGoogle Scholar
  5. Bull, L. A., D. D. Fox, L. J. Davis, K. Miller & J. G. Wullschleger, 1995. Fish distribution in the limnetic zone of Lake Okeechobee, Florida. Archiv fur Hydrobiologie, Advances in Limnology 45: 333–342.Google Scholar
  6. Canfield, D. E. Jr., R. W. Bachmann & M. V. Hoyer, 2000. A management alternative for Lake Apopka. Lake and Reservoir Management 16: 205–221.Google Scholar
  7. Carrick, H. J., F. J. Aldridge & C. L. Schelske, 1993. Wind influences phytoplankton biomass and species composition in a shallow productive lake. Limnology and Oceanography 38: 1179–1192.Google Scholar
  8. Coveney, M. F., E. F. Lowe, L. E. Battoe, E. R. Marzolf & R. Conrow, 2005. Response of a eutrophic, shallow subtropical lake to reduced nutrient loading. Freshwater Biology 50: 1718–1730.CrossRefGoogle Scholar
  9. Crisman, T. L. & J. R. Beaver, 1990. Applicability of planktonic biomanipulation for managing eutrophication in the subtropics. Hydrobiologia 200: 177–185.CrossRefGoogle Scholar
  10. Crisman, T. L., E. J. Phlips & J. R. Beaver, 1995. Zooplankton seasonality and trophic state relationships in Lake Okeechobee, Florida. Archiv fur Hydrobiologie, Advances in Limnology 45: 213–232.Google Scholar
  11. de Bernardi, R. & G. Giussani, 1990. Are blue-green algae a suitable food for zooplankton? An overview. Hydrobiologia 200: 29–41.CrossRefGoogle Scholar
  12. Dumont, H. J., 1994. On the diversity of Cladocera in the tropics. Hydrobiologia 272: 27–38.CrossRefGoogle Scholar
  13. Dumont, H. J., I. Van de Velde & S. Dumont, 1975. The dry weight estimate of biomass in a selection of Cladocera, Copepoda and Rotifera from the plankton, periphyton and benthos of continental waters. Oecologia 19: 75–97.CrossRefGoogle Scholar
  14. Elmore, J. L., B. C. Cowell & D. S. Vodopich, 1984. Biological communities of three subtropical Florida lakes of different trophic character. Archiv fur Hydrobiologie 100: 455–478.Google Scholar
  15. Fernando, C. H., 1994. Zooplankton, fish and fisheries in tropical reservoirs. Hydrobiologia 272: 105–123.CrossRefGoogle Scholar
  16. Gillooly, J. F. & S. I. Dodson, 2000. Latitudinal patterns in the size distribution and seasonal dynamics of new world, freshwater cladocerans. Limnology and Oceanography 45: 22–30.Google Scholar
  17. Gliwicz, Z. M. & E. Seidlar, 1980. Food size limitation and algae interfering with food collection in Daphnia. Archiv fur Hydrobiologie 88: 155–177.Google Scholar
  18. Guest, W. C., R. W. Drenner, S. T. Threlkeld, F. D. Martin & J. D. Smith, 1990. Effects of gizzard shad and threadfin shad on zooplankton and young-of-the-year white crappie production. Transactions of the American Fisheries Society 100: 529–536.CrossRefGoogle Scholar
  19. Gyllström, M., L. A. Hansson, E. Jeppesen, G. García-Criado, E. Gross, K. Irvine, T. Kairesalo, R. Kornijow, M. R. Miracle, M. Nykänen, T. Nõges, S. Romo, D. Stephen, E. Van Donk & B. Moss, 2005. The role of climate in shaping zooplankton communities of shallow lakes. Limnology and Oceanography 50: 2008–2021.CrossRefGoogle Scholar
  20. Hamza, W., P. Pandolfi & M. I. Taticchi, 1995. Planktonic interactions and their role in describing the trophic status of a shallow lake in Central Italy (Lake Trasimeno). Memorie dell’Istituto Italiano di Idrobiologie 53: 125–139.Google Scholar
  21. Havens, K. E. & T. L. East, 1997. Carbon dynamics in the grazing food chain of a subtropical lake. Journal of Plankton Research 19: 1687–1711.CrossRefGoogle Scholar
  22. Havens, K. E. & T. L. East, 2006. Plankton food web responses to experimental nutrient additions in a subtropical lake. TheScientificWorldJournal 6: 827–833.PubMedCrossRefGoogle Scholar
  23. Havens, K. E., T. L. East & J. R. Beaver, 1996. Experimental studies of zooplankton-phytoplankton-nutrient interactions in a large subtropical lake (Lake Okeechobee, Florida, USA). Freshwater Biology 36: 579–597.CrossRefGoogle Scholar
  24. Havens, K. E., H. J. Carrick, E. J. Lowe & M. F. Coveney, 1999. Contrasting relationships between nutrients, chlorophyll a and Secchi transparency in two shallow subtropical lakes: Lake Okeechobee and Apopka (Florida, USA). Lake and Reservoir Management 15: 298–309.CrossRefGoogle Scholar
  25. Havens, K. E., T. L. East, J. Marcus, P. Essex, B. Bolan, S. Raymond & J. R. Beaver, 2000. Dynamics of the exotic Daphnia lumholtzii and native macro-zooplankton in a subtropical chain-of-lakes in Florida, USA. Freshwater Biology 45: 21–32.CrossRefGoogle Scholar
  26. Havens, K. E., J. R. Beaver & T. L. East, 2007. Plankton biomass partitioning in a eutrophic subtropical lake: comparison with results from temperate lake ecosystems. Journal of Plankton Research 18: 1605–1625.Google Scholar
  27. Hessen, D. O., 1989. Factors determining the nutritive status and production of zooplankton in a humic lake. Journal of Plankton Research 11: 649–664.CrossRefGoogle Scholar
  28. Holanov, S. H. & J. C. Tash, 1978. Particulate and filter feeding in threadfin shad, Dorosoma petenense, at different light intensities. Journal of Fish Biology 13: 619–625.CrossRefGoogle Scholar
  29. Ibelings, B. W. & K. E. Havens, 2007. Cyanobacterial toxins: a qualitative meta-analysis of concentrations, dosage and effects in freshwater, estuarine and marine biota. Advances in Experimental Medicine and Biology 619: 685–744.Google Scholar
  30. Iglesias, C., N. Mazzeo, G. Goyenola, C. Fosalba, F. Teixeira de Mello, S. García & E. Jeppesen, 2008. Field and experimental evidence of the effect of Jenynsia multidentata, a small omnivorous-planktivorous fish, on the size distribution of zooplankton in subtropical lakes. Freshwater Biology 53: 1797–1807.CrossRefGoogle Scholar
  31. Jeppesen, E., J. P. Jensen, M. Søndergaard, T. Lauridsen, L. J. Pedersen & L. Jensen, 1997. Top-down control in freshwater lakes: the role of nutrient state, submerged macrophytes and water depth. Hydrobiologia 342: 151–164.CrossRefGoogle Scholar
  32. Jeppesen, E. J., M. Søndergaard, J. P. Jensen, K. E. Havens, et al., 2005. Lake responses to reduced nutrient loading—an analysis of contemporary long-term data from 35 case studies. Freshwater Biology 50: 1747–1771.CrossRefGoogle Scholar
  33. Jeppesen, E. J., M. Meerhoff, B. A. Jacobsen, R. S. Hansen, M. Søndergaard, J. P. Jensen, T. L. Lauridsen, N. Mazzeo & C. W. C. Branco, 2007. Restoration of shallow lakes by nutrient control and biomanipulation—the successful strategy varies with lake size and climate. Hydrobiologia 581: 269–285.CrossRefGoogle Scholar
  34. Lawrence, S. G., D. F. Malley, W. J. Findlay, M. A. MacIver & I. L. Delbaere, 1987. Method for estimating dry weight of freshwater planktonic crustaceans from measures of length and shape. Canadian Journal of Fisheries and Aquatic Sciences 44: 264–274.CrossRefGoogle Scholar
  35. Ludovisi, A., P. Pandolfi & M. I. Taticchi, 2005. The strategy of ecosystem development: specific dissipation as an indicator of ecosystem maturity. Journal of Theoretical Biology 235: 33–43.PubMedCrossRefGoogle Scholar
  36. Lund, J. W. G., C. Kipling & E. D. LeCren, 1958. The inverted microscope method for estimating algal numbers and the statistical basis for estimations by counting. Hydrobiologia 11: 393–424.CrossRefGoogle Scholar
  37. Mallin, M. A. & W. E. Partin, 1989. Thermal tolerances of common Cladocera. Journal of Freshwater Ecology 5: 45–51.Google Scholar
  38. M.A.R.U., 1992. Piano per la gestione ed il controllo del bacino del Lago Trasimeno finalizzato al contenimento dell’eutrofizzazione. Report of the Ministry of the Region of Umbria No. 3405.Google Scholar
  39. McCauley, E., 1984. The estimation of the abundance and biomass of zooplankton in samples. In Downing, J. A. & F. H. Rigler (eds), A Manual for the Assessment of Secondary Productivity in Fresh Waters. Blackwell Scientific, Oxford: 228–265.Google Scholar
  40. Meerhoff, M., J. M. Clemente, F. Teixeira de Mello, C. Iglesias, A. R. Pedersen & E. Jeppesen, 2007. Can warm climate-related structure of littoral predator assemblages weaken the clear water state in shallow lakes? Global Change Biology 13: 1888–1897.CrossRefGoogle Scholar
  41. Ostrofsky, M. L., F. G. Jacobs & J. Rowan, 1983. Evidence for the production of extracellular herbivore deterrents by Anabaena flos-aquae. Freshwater Biology 13: 501–506.CrossRefGoogle Scholar
  42. Paerl, H. W. & R. S. Fulton III, 2006. Ecology of harmful cyanobacteria. In Graneli, E. & J. T. Turner (eds), Ecology of Harmful Algae. Springer-Verlag, Berlin: 95–109.CrossRefGoogle Scholar
  43. Pinto-Coelho, R., B. Pinel-Alloul, G. Methot & K. E. Havens, 2005. Crustacean zooplankton in lakes and reservoirs of temperate and tropical regions: variation with trophic status. Canadian Journal of Fisheries and Aquatic Sciences 62: 348–361.CrossRefGoogle Scholar
  44. Porter, K. G., 1973. Selective grazing and differential digestion of algae by zooplankton. Nature 244: 179–180.CrossRefGoogle Scholar
  45. Porter, K. G. & J. D. Orcutt Jr, 1980. Nutritional adequacy, manageability, and toxicity as factors that determine the food quality of green and blue-green algae for Daphnia. In Kerfoot, W. C. (ed.), Evolution and Ecology of Zooplankton Communities. University Press of New England, Hanover, NH: 268–281.Google Scholar
  46. Reynolds, C. S., 2006. Ecology of Phytoplankton. Cambridge University Press, Cambridge, UK.Google Scholar
  47. Søndergaard, M., L. Liboriussen, A. R. Pedersen & E. Jeppesen, 2008. Lake restoration by fish removal: short and long-term effects in 36 Danish lakes. Ecosystems 11: 1291–1305.CrossRefGoogle Scholar
  48. Stephen, D., D. M. Balayla, E. Bécares, S. E. Collings, C. Fernández-Aláez, M. Fernández-Aláez, C. Ferriol, P. García, J. Gomá, M. Gyllström, L. A. Hansson, J. Hietala, T. Kairesalo, M. R. Miracle, S. Romo, J. Rueda, S. Ståhl-Delbanco, M. Svensson, K. Vakkilainen, M. Valentín, W. J. Van De Bund, E. Van Donk, E. Vincente, M. J. Villena & B. Moss, 2004. Continental-scale patterns of nutrient and fish effects on shallow lakes: introduction to a pan-European mesocosm experiment. Freshwater Biology 49: 1517–1524.CrossRefGoogle Scholar
  49. Strathmann, R. R., 1967. Estimating the organic carbon content of phytoplankton from cell volume or plasma volume. Limnology and Oceanography 12: 411–418.Google Scholar
  50. Taticchi, M. I., 1992. Studies on Lake Trasimeno and other water bodies in Umbria. Memorie dell’Istituto Italiano di Idrobiologie 50: 295–318.Google Scholar
  51. Taticchi, M. I., A. Cioffini, C. Isa & A. Bartoli, 1989. Indagine biennale (1987–1988) sulla popolazione di Daphnia (Cladocera) nel Lago Trasimeno. Rivista di Idrobiologia 28: 69–99.Google Scholar
  52. Teixeira-de Mello, F., M. Meerhoff, Z. Pekcan-Hekim & E. Jeppesen. 2009. Substantial differences in littoral fish community structure and dynamics in subtropical and temperate shallow lakes. Freshwater Biology (in press).Google Scholar
  53. Tugend, K. I. & M. S. Allen, 2000. Temporal dynamics of zooplankton community composition and mean size at Lake Wauberg, Florida. Florida Scientist 63: 142–154.Google Scholar
  54. Vanni, M. J., C. Luecke, J. F. Kitchell, Y. Allen, J. Temte & J. J. Magnuson, 1990. Effects on lower trophic levels of massive fish mortality. Nature 344: 333–335.CrossRefGoogle Scholar
  55. Work, K. A. & M. Gophen, 1999. Factors that affect the abundance of an invasive cladoceran, Daphnia lumholtzii, in US reservoirs. Freshwater Biology 41: 1–10.CrossRefGoogle Scholar
  56. Work, K. A. & K. E. Havens, 2003. Zooplankton grazing on bacteria and cyanobacteria in a eutrophic lake. Journal of Plankton Research 25: 1301–1307.CrossRefGoogle Scholar
  57. Work, K. A., K. E. Havens, B. Sharfstein & T. L. East, 2005. How important is bacterial carbon to planktonic grazers in a turbid subtropical lake? Journal of Plankton Research 27: 357–372.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Karl E. Havens
    • 1
  • Antonia Concetta Elia
    • 2
  • Maria Illuminata Taticchi
    • 2
  • Rolland S. FultonIII
    • 3
  1. 1.Florida Sea Grant College Program, University of FloridaGainesvilleUSA
  2. 2.University of PerugiaPerugiaItaly
  3. 3.St. Johns River Water Management DistrictPalatkaUSA

Personalised recommendations