, Volume 628, Issue 1, pp 137–151 | Cite as

Responses of phytoplankton functional groups to the mixing regime in a deep subtropical reservoir

  • Vanessa Becker
  • Vera Lúcia M. Huszar
  • Luciane O. Crossetti
Primary research paper


The present study was carried out in Faxinal Reservoir, a warm monomictic, meso-eutrophic reservoir in subtropical southern Brazil, with a long-standing, well-stratified condition, low epilimnetic nutrient concentrations, and a relatively clear epilimnion. In this study, we analyzed the dynamics of the phytoplankton functional groups, recognizing their driving forces in Faxinal Reservoir. Samples were taken at monthly intervals from January 2004 to January 2005 in surface waters. According to the reservoir’s mixing regime, three periods were identified during the study: stratification 1 (January–May 2004); mixing period (June–August 2004); and stratification 2 (September 2004–January 2005). The nutrient dynamics were driven by the mixing regime. The H1, F, and C phytoplankton functional groups were the most important in biomass, mainly represented by the N-fixing cyanobacterium Anabaena crassa, the colonial green alga with thick mucilaginous sheaths Nephrocytium sp., and the diatom Asterionella formosa, respectively. Tendencies pointed out by redundancy analysis (RDA) indicated that the mixing regime was the main determining factor of the seasonal dynamics of the phytoplankton community. The dominant functional groups showed a close relationship with the relative water-column stability (RWCS), and also, as a consequence of the mixing regime, with nutrient availability. The study also revealed the important role of physical processes in the seasonal gradient, in selecting for phytoplankton functional groups and, consequently, in the assessment of ecological status. Q index (assemblage index) of water quality based on functional groups revealed ecological status varying from very poor to tolerable in the stratification 1 period and from tolerable to medium in the mixing and stratification 2 periods.


Functional groups Drinking water reservoir Thermal stratification Phytoplankton dynamic Assemblage index Redundancy analysis 



We are thankful to CT-Hidro/CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), CAPES (Coordenadoria de Aperfeiçoamento de Pessoal Superior), and SAMAE (Serviço Autônomo Municipal de Água e Esgoto de Caxias do Sul) for financial support. We are grateful to the chemical engineer Fernanda B. Spiandorello, Graziela P. Monçani, and Renivo Girardi, technicians from SAMAE, for technical support; and finally Dr. Janet W. Reid (JWR Associates) for the revision of the English text.


  1. Aminot, A. & M. Chaussepied, 1983. Manuel des analyses chimiques en milieu marin. CNEXO, Brest.Google Scholar
  2. Barbosa, F. A. & J. Padisák, 2002. The forgotten lake stratification pattern: atelomixis, and its ecological importance. Verhandlungen internationale Vereinigung für theoretische und angewandte Limnologie 28: 1385–1395.Google Scholar
  3. Becker, V., 2008. A importância do regime de mistura sobre a dinâmica fitoplanctônica em reservatórios monomíticos: uma abordagem em diferentes escalas temporais. Doctoral Dissertation. Universidade do Rio de Janeiro, Rio de Janeiro: 195.Google Scholar
  4. Becker, V., V. L. M. Huszar, L. Naselli-Flores & J. Padisák, 2008. Phytoplankton equilibrium phases during thermal stratification in a deep subtropical reservoir. Freshwater Biology 53: 952–963.CrossRefGoogle Scholar
  5. Becker V., L. S. Cardoso & V. L. M. Huszar, 2009. Diel variation of phytoplankton functional groups in a subtropical reservoir in southern Brazil, during an autumnal stratification period. Aquatic Ecology (in press).Google Scholar
  6. Caraco, N. F. & R. Miller, 1998. Effects of CO2 on competition between cyanobacterium and eukaryotic phytoplankton. Canadian Journal of Fisheries and Aquatic Sciences 55: 54–62.CrossRefGoogle Scholar
  7. Cole, G. A., 1994. Textbook of Limnology. Waveland Press, Illinois: 412.Google Scholar
  8. Crossetti, L. O. & C. E. M. Bicudo, 2008. Phytoplankton as a monitoring tool in a tropical urban shallow reservoir (Garças Pond): the assemblage index application. Hydrobiologia 610: 161–173.CrossRefGoogle Scholar
  9. Dokulil, M. & C. Skolaut, 1986. Succession of phytoplankton in a deep stratifying lake: Mondsee, Austria. Hydrobiologia 138: 9–24.CrossRefGoogle Scholar
  10. Donk, E. V., L. R. Mur & J. Ringelberg, 1989. A study of phosphate limitation in Lake Maarsseveen: phosphate uptake kinetics versus bioassays. Hydrobiologia 188(189): 201–209.Google Scholar
  11. Elliott, J. A., C. S. Reynolds & A. E. Irish, 2001. An investigation of dominance in phytoplankton using PROTECH model. Freshwater Biology 46: 99–108.CrossRefGoogle Scholar
  12. Fabbro, L. D. & L. J. Duivenvoorden, 2000. A two-part model liking multidimensional environmental gradients and seasonal succession of phytoplankton assemblages. Hydrobiologia 438: 13–24.CrossRefGoogle Scholar
  13. Grime, J. P., 1979. Plant Strategies and Vegetation Processes. Wiley, New York.Google Scholar
  14. Gu, B., K. E. Havens, L. Schelske & B. H. Rosen, 1997. Uptake of dissolved nitrogen by phytoplankton in a eutrophic subtropical lake. Journal of Plankton Research 19: 759–770.CrossRefGoogle Scholar
  15. Haney, J. F., 1987. Field studies on zooplankton–cyanobacteria interactions. New Zealand Journal of Marine and Freshwater Research 21: 467–475.Google Scholar
  16. Happey-Wood, C. M., 1988. Ecology of freshwater planktonic green algae. In Sandgren, C. D. (ed.), Growth and Reproductive Strategies of Freshwater Phytoplankton. Cambridge University Press, Cambridge: 175–226.Google Scholar
  17. Havens, K. E., E. J. Phlips, M. F. Cichra & B. L. Li, 1998. Light availability as a possible regulator of cyanobacteria species composition in a shallow subtropical lake. Freshwater Biology 39: 547–556.CrossRefGoogle Scholar
  18. Hillebrand, H., C.-D. Dürselen, D. Kirschtel, U. Pollingher & T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35: 403–424.CrossRefGoogle Scholar
  19. Huszar, V., C. Kruk & N. Caraco, 2003. Steady-state assemblages of phytoplankton in four temperate lakes (NE USA). Hydrobiologia 502: 97–109.CrossRefGoogle Scholar
  20. Jensen, P., E. Jeppesen, K. Olrik & P. Kristensen, 1994. Impact of nutrients and physical factors on the shift from cyanobacterial to chlorophyte dominance in shallow Danish lakes. Canadian Journal of Fisheries and Aquatic Sciences 51: 1692–1699.CrossRefGoogle Scholar
  21. Kalff, J., 2002. Limnology: inland water ecosystem. Prentice Hall, New Jersey: 592.Google Scholar
  22. Kilham, S. S., 1986. Dynamics of lake Michigan natural phytoplankton communities in continuous along a Si:P loading. Canadian Journal of Fisheries and Aquatic Sciences 43: 351–360.Google Scholar
  23. Köppen, W., 1936. Das geographische System der Klimate—Handbuch der Klimatologie, V. L. Mol. 1, Part C, Gebr. Bornträger, Berlin.Google Scholar
  24. Kruk, C., N. Mazzeo, G. Lacerot & C. S. Reynolds, 2002. Classification schemes of phytoplankton: selecting an ecological approach for the analysis of species temporal replacement. Journal of Plankton Research 24: 901–912.CrossRefGoogle Scholar
  25. Leitão, M., S. Morata, S. Rodriguez & J. P. Vergon, 2003. The effect of perturbations on phytoplankton assemblages in a deep reservoir (Vouglans, France). Hydrobiologia 502: 73–83.CrossRefGoogle Scholar
  26. Lopes, M. R. M., C. E. M. Bicudo & M. C. Ferragut, 2005. Short term spatial and temporal variation of phytoplankton in a shallow tropical oligotrophic reservoir, southeast Brazil. Hydrobiologia 542: 235–247.CrossRefGoogle Scholar
  27. Ludwig, T. A. V., P. I. Tremarin, V. Becker & L. C. Torgan, 2008. Thalassiosira rudis sp. nov. (Coscinodiscophyceae): a new freshwater species. Diatom Research 23: 389–400.Google Scholar
  28. Lund, J. W. G., C. Kipling & E. D. Lecren, 1958. The inverted microscope method of estimating algal number and the statistical basis of estimating by counting. Hydrobiologia 11: 143–170.CrossRefGoogle Scholar
  29. McCune, B. & M. J. Mefford, 1997. PC-ORD. Multivariate analysis of ecological data, version 3.0. MjM Software Design, Oregon.Google Scholar
  30. Mieleitner, J., M. Borsuk, H.-R. Bürgi & P. Reichert, 2008. Identifying functional groups of phytoplankton using data from three lakes of different trophic state. Aquatic Sciences—Research Across Boundaries 70: 30–46.Google Scholar
  31. Miller, H., I. Jones, A. Folkard & S. Maberly, 2005. The vertical distribution of solubre reactive phosphorus in the water column of Esthwaite Water and the effects of physical variables. In Folkard, A. & I. Jones (eds), Proccessings of the 9th Workshop on physical processes in natural waters. Lancaster University, Lancaster: 183–190.Google Scholar
  32. Mullin, J. B. & J. P. Riley, 1955. The colorimetric determination of silicate with reference to sea and natural waters. Analytica Chimica Acta 12: 162–176.CrossRefGoogle Scholar
  33. Murphy, J. & J. P. Riley, 1962. A modified single-solution method for the determination of phosphate in natural waters. Analytica Chimica Acta 27: 31.CrossRefGoogle Scholar
  34. Naselli-Flores, L., 1998. Phytoplankton assemblages in reservoirs: is it chemical or physical constraints which regulate their structure? International Revue of Hydrobiology 83: 351–360.Google Scholar
  35. Padisák, J., G. Borics, G. Fehér, I. Grigorszky, I. Oldal, A. Schmidt & Z. Zámbóné-Doma, 2003a. Dominant species, functional assemblages and frequency of equilibrium phases in late summer phytoplankton assemblages in Hungarian small shallow lakes. Hydrobiologia 502: 157–168.CrossRefGoogle Scholar
  36. Padisák, J., É. Soróczki-Pinter & Z. Rezner, 2003b. Sinking properties of some phytoplankton shapes and the relation of form resistance to morphological diversity of plankton: an experimental study. Hydrobiologia 500: 243–257.CrossRefGoogle Scholar
  37. Padisák, J., G. Borics, I. Grigorszky & É. Soróczki-Pintér, 2006. Use of phytoplankton assemblages for monitoring ecological status of lakes within the Water Framework Directive: the assemblage index. Hydrobiologia 553: 1–14.CrossRefGoogle Scholar
  38. Padisák, J., L. O. Crossetti & L. Naselli-Flores, 2009. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621: 1–19.CrossRefGoogle Scholar
  39. Reynolds, C. S., 1980. Phytoplankton assemblages and their periodicity in stratifying lake systems. Holarctic Ecology 3: 141–159.Google Scholar
  40. Reynolds, C. S., 1997. Vegetation process in the pelagic: a model for ecosystem theory. In Kinne, O. (ed.), Excellence in Ecology. ECI, Oldendorf.Google Scholar
  41. Reynolds, C. S., 1999. Phytoplankton assemblages in reservoirs. In Tundisi, J. G. & M. Straškraba (eds), Theoretical Reservoir Ecology and its Application. International Institute of Ecolgy/Backhuys Publishers, São Carlos: 439–456.Google Scholar
  42. Reynolds, C. S., 2006. The Ecology of Phytoplankton (Ecology, Biodiversity and Conservation). Cambridge University Press, Cambridge: 550.Google Scholar
  43. Reynolds, C. S., J. Padisák & U. Sommer, 1993. Intermediate disturbance in the ecology of phytoplankton and the maintenance of species diversity: a synthesis. Hydrobiologia 249: 183–188.CrossRefGoogle Scholar
  44. Reynolds, C. S., V. L. M. Huszar, C. Kruk, L. Nasseli-Flores & S. Melo, 2002. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research 24: 417–428.CrossRefGoogle Scholar
  45. Sarmento, H., M. Isumbisho & J.-P. Descy, 2007. Phytoplankton ecology of Lake Kivu (eastern África). Journal of Plankton Research 28: 815–829.CrossRefGoogle Scholar
  46. Seip, K. L. & C. S. Reynolds, 1995. Phytoplankton functional attributes along trophic gradient and season. Limnology and Oceanography 40: 589–597.CrossRefGoogle Scholar
  47. Smith, V., 1983. Low nitrogen to phosphorous rations favor dominance by blue-green algae in lake phytoplankton. Science 221: 669–671.PubMedCrossRefGoogle Scholar
  48. Smith, V., 1986. Light and nutrient effects on the relative biomass of blue-green algae in lake phytoplankton. Canadian Journal of Fisheries and Aquatic Sciences 43: 148–153.CrossRefGoogle Scholar
  49. Solorzano, L., 1969. Determination of ammonia in natural waters by phenol hypochlorite method. Limnology and Oceanography 14: 799–801.Google Scholar
  50. Sommer, U., 1988. Growth and survival strategies of planktonic diatoms. In Sandgren, C. D. (ed.), Growth and Reproductive Strategies of Freshwater Phytoplankton. Cambridge University Press, Cambridge: 227–260.Google Scholar
  51. Strickland, J. D. H. & T. R. Parsons, 1972. A practical handbook of seawater analysis. Bulletin 167, 2nd ed. Fisheries research board of Canada, Ottawa.Google Scholar
  52. Tavera, R. & V. Martínez-Almeida, 2005. Atelomixis as a possible driving force in the phytoplankton composition of Zirahuén, a warm-monomictic tropical lake. Hydrobiologia 533: 199–208.CrossRefGoogle Scholar
  53. Tilman, D., 1981. Tests of resource competition theory using four species of Lake Michigan algae. Ecology 62: 802–815.CrossRefGoogle Scholar
  54. Tilman, D. & S. S. Kilham, 1976. Phosphate and silicate growth and uptake kinetics of the diatoms Asterionella formosa and Cyclotella meneghiniana in batch and semi-continuous culture. Journal of Phycology 12: 375–383.Google Scholar
  55. Ter Braak, C. J. F. & P. Šmilauer, 1998. CANOCO Reference Manual and User’s Guide to CANOCO for Windows. Centre for Biometry, Wageningen.Google Scholar
  56. Trimbee, A. M. & E. E. Prepas, 1987. Evaluation of total phosphorus as a predictor of the relative biomass of blue-green algae with emphasis on Alberta lakes. Canadian Journal of Fisheries and Aquatic Sciences 44: 1337–1342.CrossRefGoogle Scholar
  57. Uhelinger, V., 1964. Étude statistique des méthodes de dénobrement planctonique. Archival Science 17: 121–123.Google Scholar
  58. Utermöhl, H., 1958. Zur vervollkommung der quantitativen phytoplankton—methodik. Mitteilungen der internationale Vereinigung für Theoretische und Angewandte Limnologie 9: 1–38.Google Scholar
  59. Watson, S. B., E. McCauley & J. A. Downing, 1997. Patterns in phytoplankton taxonomic composition across temperate lakes of differing nutrient status. Limnology and Oceanography 42: 487–495.Google Scholar
  60. Wetzel, R. G. & G. E. Likens, 2000. Limnological Analyses, 3ª ed. Springer-Verlag NewYork Inc., New York: 432.Google Scholar
  61. Wood, E. D., F. A. J. Armstrong & F. A. Richards, 1967. Determination of nitrate in sea water by cadmium–copper reduction to nitrite. Journal of the Marine Biological Association 47: 23–31.CrossRefGoogle Scholar
  62. Water Framework Directive (WFD), 2000. Directive 2000/60/ec of the European Parliament and of the Council 22.12.2000. Official Journal of the European Communities L327: 1–72.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Vanessa Becker
    • 1
    • 2
  • Vera Lúcia M. Huszar
    • 1
  • Luciane O. Crossetti
    • 3
  1. 1.Laboratory of PhycologyMuseu Nacional do Rio de Janeiro - Universidade Federal do Rio de JaneiroSão CristovãoBrazil
  2. 2.Water Resources and Sanitary EngineeringInstituto de Pesquisas Hidráulicas - Universidade Federal do Rio Grande do Sul. Av. Bento Gonçalves 9500Porto AlegreBrazil
  3. 3.Department of LimnologyUniversity of PannoniaVeszprémHungary

Personalised recommendations