Advertisement

Hydrobiologia

, Volume 640, Issue 1, pp 115–124 | Cite as

Our current understanding of the Upper Mississippi River System floodplain forest

  • Susan P. Romano
UPPER MISSISSIPPI RIVER

Abstract

The silver maple-American elm floodplain forest spans throughout the floodplains of the Upper Mississippi River System (UMRS). These forests of the UMRS today are less diverse than those of pre-European expansion (ca. early 1800s). Scientists and land managers are concerned about loss of species diversity including mast species such as pin oak (Quercus palustris Muenchh.), swamp white oak (Quercus bicolor Willd.), bur oak (Quercus macrocarpa Michx. Q), pecan (Carya illinoinensis (Wangenh.) K. Koch), and other hickories. The Great Midwest Flood of 1993 maintained species diversity in the lower, unimpounded region of the Upper Mississippi River, providing an opportunity for eastern cottonwood and black willow to regenerate in this portion of the Mississippi River. However, throughout the entire region, floodplain forests of the Upper Mississippi River have become less diverse, and have become dominated by the flood-tolerant and shade-tolerant silver maple (Acer saccharinum L.). The imminent loss of green ash (Fraxinus pennsylvanica Marsh.) to the Emerald Ash Borer (Agrilus planipennis Fairmaire) follows an already changing forest structure due to a disease-related shift of American elm (Ulmus americana L.) from the overstory to the midstory strata. Another invasive, reed canary grass (Phalaris arundinaceae L.), interferes with evolved mechanisms for establishment as it outcompetes trees of the early successional floodplain forest. Further research is needed to create and maintain diverse floodplain forest communities that have been lost under current conditions. Returning flood-prone agricultural lands within the floodplain to the floodplain forest will improve the health and connectivity of the river system, increase the diversity of habitats, and provide flood relief for communities of the Upper Mississippi River.

Keywords

Upper Mississippi River Illinois River Floodplain forest Acer saccharinum 

Notes

Acknowledgements

I would like to thank Jim Zaczek, David Gibson, Loretta Battaglia, Dale Vitt, John Phelps, and Karl Williard, Southern Illinois University-Carbondale, and Yao Yin, University of Tennessee, for their input and review of earlier versions of this article. The author would also like to thank the peer reviewers for their comments and recommendations.

References

  1. Anfinson, J. O., 2003. The River We Have Wrought. University of Minnesota Press, Minneapolis.Google Scholar
  2. Baker, J. B., 1977. Tolerance of planted hardwoods to spring flooding. Southern Journal of Applied Forestry 1: 23–25.Google Scholar
  3. Barko, J., B. Johnson & C. Theiling, 2006. Environmental Science Panel Report: Implementing Adaptive Management. U.S. Army Engineer Districts, Rock Island, IL; St. Louis, MO; St. Paul, MN.Google Scholar
  4. Bedinger, M. S., 1978. Relation Between Forest Species and Flooding. American Water Resources Association, Minneapolis, MN, November: 427–435.Google Scholar
  5. Bell, D. T., 1980. Gradient trends in a streamside forest of central Illinois. Bulletin of the Torrey Botanical Club 107: 172–180.CrossRefGoogle Scholar
  6. Bell, D. T. & F. L. Johnson, 1974. Flood caused tree mortality around Illinois reservoirs. Transactions of the Illinois State Academy of Science 67: 28–67.Google Scholar
  7. Bey, C. F., 1990. American elm. In Burns, R. M. & B. H. Honkala (eds), Silvics of North America, Agriculture Handbook 654. Forest Service, United States Department of Agriculture, Washington, DC.Google Scholar
  8. Burns, R. M. & B. H. Honkala, 1990. Silvics of North America, Vol. 1, Conifers, Agriculture Handbook 654. Forest Service, U.S.D.A., Washington, DC.Google Scholar
  9. Coops, H., K. Tockner, C. Amoros, T. Hein & G. Quinn, 2006. Restoring lateral connections between rivers and floodplains: lessons from rehabilitation projects. In Verhoeven, J. T. A., B. Beltman, R. Bobink & D. F. Whingham (eds), Wetlands and Natural Resource Management. Springer, Berlin: 15–30.CrossRefGoogle Scholar
  10. Delong, M. D., this volume. Food webs and the Upper Mississippi River: contributions to our understanding of ecosystem function in large rivers. doi: 10.1007/s10750-009-0065-6
  11. Dunn, C. P., 1986. Shrub layer response to death of Ulmus americana in Southeastern Wisconsin lowland forests. Bulletin of the Torrey Botanical Club 113: 142–148.CrossRefGoogle Scholar
  12. Dunn, C. P. & F. Stearns, 1987a. A comparison of vegetation and soils in floodplain and basin forested wetlands of southeastern Wisconsin. American Midland Naturalist 118: 375–384.CrossRefGoogle Scholar
  13. Dunn, C. P. & F. Stearns, 1987b. Relationship of vegetation layers to soils in southeastern Wisconsin forested wetlands. American Midland Naturalist 118: 366–374.CrossRefGoogle Scholar
  14. Fenner, P., W. W. Brady & D. R. Patton, 1985. Effects of regulated water flows on regeneration of Fremont cottonwood. Journal of Range Management 38: 135–138.CrossRefGoogle Scholar
  15. Fremling, C. R., J. L. Rasmussen, R. E. Sparks, S. P. Cobb, C. F. Bryan & T. O. Claflin, 1989. Mississippi River fisheries: a case history. In Dodge, D. P. (ed.), Proceedings of the International Large River Symposium. Canadian Special Publication of Fisheries and Aquatic Sciences 106, Ottawa, Ontario: 309–351.Google Scholar
  16. Gabriel, W. J., 1990. Silver maple. In Burns, R. M. & B. H. Honkala (eds), Silvics of North America, Vol. 1, Conifers, Agriculture Handbook 654. U.S.D.A. Forest Service, Washington, DC.Google Scholar
  17. Gergel, S. E., M. D. Dixon & M. G. Turner, 2002. Consequences of human-altered floods: levees, floods, and floodplain forests along the Wisconsin River. Ecological Applications 12: 1755–1770.CrossRefGoogle Scholar
  18. Grelen, H. E., 1990. River birch. In Burns, R. M. & B. H. Honkala (eds), Silvics of North America, Agriculture Handbook 654. Forest Service, United States Department of Agriculture, Washington, DC.Google Scholar
  19. Gutowski, W. J., G. C. Hegerl, G. J. Holland, T. R. Knutson, L. O. Mearns, R. J. Stouffer, P. J. Webster, M. F. Wehner & F. W. Zwiers, 2008. Causes of observed changes in extremes and projections of future changes in weather and climate extremes in a changing climate. Regions of focus: North America, Hawaii, Caribbean, and U.S. Pacific Islands. In Karl, T. R., G. A. Meehl, C. D. Miller, S. J. Hassol, A. M. Waple & W. L. Murray (eds), A Report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research, Washington, DC.Google Scholar
  20. Hardin, E. D., K. P. Lewis & W. A. Wistendahl, 1989. Gradient analysis of floodplain forests along three rivers in unglaciated Ohio. Bulletin of the Torrey Botanical Club 116: 258–264.CrossRefGoogle Scholar
  21. Harlow, W. M., E. S. Harrar & F. M. White, 1979. Textbook of Dendrology. McGraw-Hill Book Company, New York.Google Scholar
  22. Hook, D. D., 1984. Waterlogging tolerance of lowland tree species of the South. Southern Journal of Applied Forestry 8: 136–149.Google Scholar
  23. Hosner, J. F., 1958. The effects of complete inundation upon seedlings of six bottomland tree species. Ecology 39: 371–374.CrossRefGoogle Scholar
  24. Hosner, J. F. & S. G. Boyce, 1962. Tolerance to water saturated soil of various bottomland hardwoods. Forest Science 8: 180–186.Google Scholar
  25. Houser, J. N. & W. B. Richardson, this volume. Nitrogen and phosphorus in the Upper Mississippi River: transport, processing, and effects on the river ecosystem. doi: 10.1007/s10750-009-0067-4
  26. Hupp, C. R. & W. R. Osterkamp, 1985. Bottomland vegetation distribution along Passage Creek, Virginia, in relation to fluvial landforms. Ecology 66: 670–681.CrossRefGoogle Scholar
  27. Iowa Department of Natural Resources, 2005. Emerald Ash Borer: Potential Impact on Iowa. http://www.iowadnr.gov/forestry/pdf/invasive/borer.pdf. Accessed on January 13, 2009.
  28. Jackson, R. B., S. R. Carpenter, C. N. Dahm, D. M. McKnight, R. J. Naiman, S. L. Postel & S. W. Running, 2001. Water in a changing world. Ecological Applications 11: 1027–1045.CrossRefGoogle Scholar
  29. Johnson, F. L. & D. T. Bell, 1976. Tree growth and mortality in the streamside forest. Castanea 41: 35–41.Google Scholar
  30. Jones, R. H., B. G. Lockaby & G. L. Somers, 1996. Effects of microtopography and disturbance on fine-root dynamics in wetland forests of low-order stream floodplains. American Midland Naturalist 136: 57–71.CrossRefGoogle Scholar
  31. Junk, W. J., 2005. Flood pulsing and the linkages between terrestrial, aquatic, and wetland systems. Verhandlungen der Internationalen Vereinigung für Theoretische and Angewandte Limnologie 29: 11–38.Google Scholar
  32. Kabrick, J. & D. Dey, 2001. Silvics of Missouri bottomland tree species. Notes for Forest Managers. No. 5.Google Scholar
  33. Keeley, J. E., 1979. Population differentiation along a flood frequency gradient: physiological adaptations to flooding in Nyssa sylvatica. Ecological Monographs 49: 89–108.CrossRefGoogle Scholar
  34. Kennedy, H. E., Jr., 1990. Green ash. In Burns, R. M. & B. H. Honkala (eds), Silvics of North America, Agriculture Handbook 654. Forest Service, United States Department of Agriculture, Washington, DC.Google Scholar
  35. Kim, K. D., K. Ewing & D. E. Giblin, 2006. Controlling Phalaris arundinacea (reed canarygrass) with live willow stakes: a density-dependent response. Ecological Engineering 27: 219–227.CrossRefGoogle Scholar
  36. Klimo, E. & H. Hager, 2000. The Floodplain Forests in Europe: Current Situations and Perspectives. Research Report, European Forest Institute. Brill Academic Publishers, Boston.Google Scholar
  37. Knox, J. C., 1993. Large increases in flood magnitude in response to modest changes in climate. Nature 361: 430–432.CrossRefGoogle Scholar
  38. Kozlowski, T. T., 1984. Extent, causes, and impacts of flooding. In Kozlowski, T. T. (ed.), Flooding and Plant Growth. Academic Press, Orlando, FL.Google Scholar
  39. Krajicek, J. E. & R. D. Williams, 1990. Hackberry. In Burns, R. M. & B. H. Honkala (eds), Silvics of North America, Agriculture Handbook 654. Forest Service, United States Department of Agriculture, Washington, DC.Google Scholar
  40. Krumbach A. W. Jr., 1959. Effects of microrelief on distribution of soil moisture and bulk density. Journal of Geophysical Research 64: 1587–1590.CrossRefGoogle Scholar
  41. Martin, W. H., S. G. Boyce & A. C. Echternacht, 1993. Biodiversity of the Southeastern United States: Lowland Terrestrial Assemblages. John Wiley & Sons, New York.Google Scholar
  42. McKnight, J. S., D. D. Hook, O. G. Langdon & R. L. Johnson, 1981. Flood tolerance and related characteristics of trees of the bottomland forests of the southern United States. In Clark, J. R. & J. Benforado (eds), Wetlands of Bottomland Hardwood Forests. Developments in Agricultural and Managed Forest Ecology. Elsevier Scientific, New York: 29–69.Google Scholar
  43. McQuilkin, R. A., 1990. Pin oak. In Burns, R. M. & B. H. Honkala (eds), Silvics of North America, Vol. 2: Hardwoods, Agriculture Handbook 654. Forest Service, United States Department of Agriculture, Washington, DC.Google Scholar
  44. Meybeck, M., 2003. Global analysis of river systems: from Earth system controls to Anthropocene syndromes. Philosophical Transactions: Biological Sciences 358: 1935–1955.CrossRefGoogle Scholar
  45. Middleton, B., 1995. The Role of Flooding in Seed Dispersal: Restoration of Cypress Swamps Along the Cache River, Illinois. U.S. Geological Survey and Water Resources Center, Illinois.Google Scholar
  46. Middleton, B., 1999. Wetland Restoration: Flood Pulsing and Disturbance Dynamics. John Wiley & Sons, New York.Google Scholar
  47. Minckler, L. S., 1965. Pin oak (Q. palustris Muenchh). In Fowells, H. A. (ed.), Silvics of Forest Trees of the United States, Agriculture Handbook 271. USDA Forest Service, United States Department of Agriculture, Washington, DC.Google Scholar
  48. Muirhead, J. R., B. Leung, C. van Overdijk, D. W. Kelly, K. Nandakumar, K. R. Marchant & H. J. MacIsaac, 2005. Modelling local and long-distance dispersal of invasive emerald ash borer Agrilus planipennis (Coleoptera) in North America. Diversity and Distributions 12: 71–79.CrossRefGoogle Scholar
  49. Nanson, G. C. & H. F. Beach, 1977. Forest succession and sedimentation on a meandering-river floodplain, northeast British Columbia, Canada. Journal of Biogeography 4: 229–251.CrossRefGoogle Scholar
  50. National Agricultural Pest Information System, Pest Tracker. http://pest.ceris.purdue.edu/searchmap.php?selectName=INAHQJA. Accessed on January 7, 2009.
  51. Nationalatlas.gov, forest cover types. http://nationalatlas.gov/atlasftp.html?openChapters=chpbio#chpbio. Accessed on October 18, 2009.
  52. Nelson, J. C., 1997. Presettlement vegetation patterns along the 5th principal meridian, Missouri Territory, 1815. American Midland Naturalist 137: 79–94.CrossRefGoogle Scholar
  53. Nielsen, D. N., R. G. Rada & M. M. Smart, 1984. Sediments of the Upper Mississippi River: their sources, distribution, and characteristics. In Wiener, J. G., R. V. Anderson & D. R. McConville (eds), Contaminants in the Upper Mississippi River. Butterworth Publishers, Stoneham, MA: 67–98.Google Scholar
  54. Oldenburg, J. F., 1980. The ecology of Acer saccharinum in floodplain forest assemblages of central Illinois. M.S. Thesis, University of Illinois at Urbana-Champaign.Google Scholar
  55. Overton, R. P., 1990. Box elder. In Burns, R. M. & B. H. Honkala (eds), Silvics of North America, Agriculture Handbook 654. Forest Service, United States Department of Agriculture, Washington, DC.Google Scholar
  56. Parker, G. R. & C. Merritt, 1995. The central region. In Barrett, J. W. (ed.), Regional Silviculture of the United States. John Wiley & Sons, New York: 129–172.Google Scholar
  57. Phares, R. E. & H. C. Larsson, 1980. Silver maple – American elm. In Eyre, F. H. (ed.), Forest Cover Types. Society of American Foresters, Washington, DC.Google Scholar
  58. Phillippe, P. E. & J. E. Ebinger, 1973. Vegetation survey of some lowland forests along the Wabash River. Castanea 38: 339–349.Google Scholar
  59. Pitcher, J. A. & J. S. McKnight, 1990. Black willow. In Burns, R. M. & B. H. Honkala (eds), Silvics of North America, Vol. 2: Hardwoods, Agriculture Handbook 654. Forest Service, United States Department of Agriculture, Washington, DC.Google Scholar
  60. Putnam, J. A., G. M. Furnival & J. S. McKnight, 1960. Management and Inventory of Southern Hardwoods, USDA Agricultural Handbook 181. United States Department of Agriculture, Washington, DC.Google Scholar
  61. Robertson, P. A., G. T. Weaver & J. A. Cavanaugh, 1978. Vegetation and tree species patterns near the northern terminus of the southern floodplain forest. Ecological Monographs 48: 249–267.CrossRefGoogle Scholar
  62. Rogers, R., 1990. Swamp white oak. In Burns, R. M. & B. H. Honkala (eds), Silvics of North America, Agriculture Handbook 654. Forest Service, United States Department of Agriculture, Washington, DC.Google Scholar
  63. Romano, S. P., 2006. Tree composition and growth response to flooding in a hydrologically modified floodplain forest in southern Illinois, USA. Ph.D. Dissertation, Southern Illinois University-Carbondale.Google Scholar
  64. Scarpino, P. V., 1985. Great River. University of Missouri Press, Columbia, MO.Google Scholar
  65. Schopmeyer, C. S., 1974. Seeds of Woody Plants in the United States. United States Department of Agriculture, Forest Service, Washington, DC.Google Scholar
  66. Shafroth, P. B., G. T. Auble & M. L. Scott, 1995. Germination and establishment of the native plains cottonwood (Populus deltoides Marshall subs. Monilifera) and the exotic Russian-Olive (Eleagnus angustifolia L.). Conservation Biology 9: 1169–1175.CrossRefGoogle Scholar
  67. Smith, R. L. & T. M. Smith, 2001. Ecology and Field Biology. Benjamin Cummings, San Francisco.Google Scholar
  68. Sparks, R. E., 1992. Risks of altering the hydrologic regime of large rivers. In Carirns J. Jr., B. R. Niederlehner & D. R. Orvos (eds), Advances in Modern Environmental Toxicology. Princeton Scientific Publishing Company, New Jersey: 119–152.Google Scholar
  69. Taylor, J. R., M. A. Cardamone & W. J. Mitsch, 1990. Bottomland hardwood forests: their functions and values. In Gosselink, J. G., L. C. Lee & T. A. Muir (eds), Ecological Processes and Cumulati6e Impacts: Illustrated by Bottomland Hardwood Wetland Ecosystems. Lewis Publishers, Inc, Chelsea, MI: 13–73.Google Scholar
  70. Terry Norris, F., 1997. Where did the villages go? Steamboats, deforestation, and archaeological loss in the Mississippi Valley. In Hurley, A. (ed.), Common Fields: An Environmental History of St. Louis. Missouri Historical Society Press, St. Louis, MO: 73–89.Google Scholar
  71. The US Army Corps of Engineers, 2006. http://www.mvp.usace.army.mil/docs/projs/emp/7%20Floodplain%20Restoration.p. Accessed in 2009.
  72. Theiling, C., 1999. River geomorphology and floodplain habitats. In U.S. Geological Survey (eds), Ecological Status and Trends of the Upper Mississippi River System 1998: A Report of the Long Term Resource Monitoring Program. Upper Midwest Environmental Sciences Center, La Crosse, Wisconsin. April 1999. LTRMP 99-T001: 236 pp.Google Scholar
  73. Theiling, C. H. & J. M. Nestler, this volume. River stage response to alteration of Upper Mississippi River channels, floodplains, and watersheds. doi: 10.1007/s10750-009-0066-5.
  74. Tockner, K. & F. Schiemer, 1997. Ecological aspects of the restoration strategy for a river-floodplain system on the Danube River in Austria. Global Ecology and Biogeography Letters 6(3/4): 321–329.CrossRefGoogle Scholar
  75. Tucker, J. K., M. A. Romano & J. T. Lamer, this volume. Research on reptiles and amphibians on the Upper Mississippi River: the necessity of future long-term studies.Google Scholar
  76. United States Army Corps of Engineers, 2004. Final Integrated Feasibility Report and Programmatic Environmental Impact Statement for the UMR-IWW System Navigation Feasibility Study.Google Scholar
  77. Wells, O. O. & R. C. Schmidtling, 1990. Sycamore. In Burns, R. M. & B. H. Honkala (eds), Silvics of North America, Agriculture Handbook 654. Forest Service, United States Department of Agriculture, Washington, DC.Google Scholar
  78. Yeager, L. E., 1949. Effect of permanent flooding in a river-bottom timber area. Illinois Natural History Survey Bulletin 25: 33–65.Google Scholar
  79. Yin, Y., 1998. Flooding and forest succession in a modified stretch along the Upper Mississippi River. Regulated Rivers: Research & Management 14: 217–225.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Institute for Environmental Studies, Departments of Biological Sciences and GeographyWestern Illinois University-Quad CitiesMolineUSA

Personalised recommendations