Skip to main content
Log in

Genetic diversity in Australian ancient asexual Vestalenula (Ostracoda, Darwinulidae): little variability down under

  • Primary research paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Darwinulid ostracods are putative ancient asexuals, and are thus assumed to be unable to purge deleterious mutations from their genomes. Some darwinulids species can be found both above (epigeic) and below ground (hypogeic). We hypothesize that surface populations carry more mutations than their below-ground counterparts, which are buffered from mutagens such as UV-B. Given the age of the investigated area, the Pilbara in Western Australia, we also expect geographic patterning of observed haplotypes. We have used DNA sequence data from the nuclear ITS and the mitochondrial COI region to investigate a (limited) data set on two Australian species, the endemic Vestalenula matildae and V. marmonieri from the Pilbara region. We do not find differences in genetic variability between specimens from subterranean habitats as compared to those from habitats above ground. There was also no congruence between hydrological basins and distribution patterns of the haplotypes identified. Although our data indicate that the two species may have split from each other ca. 70 myr ago, this has not resulted in any clear phylogeographic patterns among the analysed specimens across the regions of the Pilbara.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allwood, A. C., M. R. Walter, I. W. Burch & B. S. Kamber, 2007. 3.43 billion-year-old stromatolite reef from the Pilbara Craton of Western Australia: ecosystem-scale insights to early life on Earth. Precambrian Research 158: 198–227.

    Article  CAS  Google Scholar 

  • Altschul, S. F., W. Gish, W. Miller, E. W. Myers & D. J. Lipman, 1990. Basic local alignment search tool. Journal of Molecular Biology 215: 403–410.

    PubMed  CAS  Google Scholar 

  • Anonymous, 1984. Streamflow Records of Western Australia to 1982, 3 Vols. Public Works Department, Perth.

  • Artheau, M., 2007. Geographical review of the ostracod genus Vestalenula (Darwinulidae) and a new subterranean species from southern France. Invertebrate Systematics 21: 471–486.

    Article  Google Scholar 

  • Bell, G., 1982. The Masterpiece of Nature. Croom Helm, London.

    Google Scholar 

  • Birky, C. W. Jr., 1996. Heterozygosity, heteromorphy, and phylogenetic trees in asexual eukaryotes. Genetics 144: 427–437.

    PubMed  Google Scholar 

  • Butlin, R. K., 2000. Virgin rotifers. Trends in Ecology & Evolution 15: 389–390.

    Article  Google Scholar 

  • Clement, M., D. Posada & K. A. Crandall, 2000. TCS: a computer program to estimate gene genealogies. Molecular Ecology 9: 1657–1660.

    Article  PubMed  CAS  Google Scholar 

  • Eberhard, S. M., S. A. Halse, M. R. Williams, M. D. Scanlon, J. S. Cocking & H. J. Barron, 2007. Exploring the relationship between sampling efficiency and short range endemicity for stygofauna in the Pilbara region, Western Australia. Freshwater Biology 54: 885–901.

    Article  CAS  Google Scholar 

  • Finston, T. L., M. S. Johnson, W. F. Humphreys, S. M. Eberhard & S. A. Halse, 2007. Cryptic speciation in two widespread subterranean amphipod genera reflects historical drainage patterns in an ancient landscape. Molecular Ecology 16: 355–365.

    Article  PubMed  CAS  Google Scholar 

  • Fisher, R. A., 1930. The Genetical Theory of Natural Selection. Clarendon Press, Oxford.

    Google Scholar 

  • Folmer, O., M. Black, W. Hoeh, R. Lutz & R. Vrijenhoek, 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3: 294–299.

    PubMed  CAS  Google Scholar 

  • Frakes, L. A., B. McGowran & J. M. Bowler, 1981. Evolution of Australian environments. In George, A. S. (ed.), Flora of Australia Volume 1 – Introduction, 1st ed. Flora of Australia Series, CSIRO Publishing, Canberra: 1–14.

    Google Scholar 

  • Guindon, S. & O. Gascuel, 2003. PhyML – a simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology 52: 696–704.

    Article  PubMed  Google Scholar 

  • Hamilton, W. D., 1980. Sex versus non-sex versus parasite. Oikos 35: 282–290.

    Article  Google Scholar 

  • Hammer, Ø., D. A. T. Harper & P. D. Ryan, 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4: 9 pp.

  • Humphreys, W. F., 2008. Rising from Down Under: developments in subterranean biodiversity in Australia from a groundwater fauna perspective. Invertebrate Systematics 22: 85–101.

    Article  Google Scholar 

  • Karanovic, T., 2006. Subterranean copepods (Crustacea, Copepoda) from the Pilbara region in Western Australia. Records of the Western Australian Museum Supplement 70: 1–239.

    Google Scholar 

  • Karanovic, I., 2007. Candoninae (Ostracoda) from the Pilbara region in Western Australia. Crustaceana Monographs 7: 1–432.

    Google Scholar 

  • Knott, B. & S. A. Halse, 1999. Pilbarophreatoicus platyarthricus n.gen., n.sp. (Isopoda: Phreatoicidae: Amphisopodidae) from the Pilbara region of Western Australia. Records of the Australian Museum 51: 33–42.

    Google Scholar 

  • Kondrashov, A. S., 1988. Deleterious mutations and the evolution of sexual reproduction. Nature 336: 435–440.

    Article  PubMed  CAS  Google Scholar 

  • Kondrashov, A. S., 1993. Classification of hypotheses on the advantage of amphimixis. Journal of Heredity 84: 372–387.

    PubMed  CAS  Google Scholar 

  • Larkin, M. A., G. Blackshields, N. P. Brown, R. Chenna, P. A. McGettigan, H. McWilliam, F. Valentin, I. M. Wallace, A. Wilm, R. Lopez, J. D. Thompson, T. J. Gibson & D. G. Higgins, 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947–2948.

    Article  PubMed  CAS  Google Scholar 

  • Maddison, D. R. & W. P. Maddison, 2001. MacClade 4: Analysis of Phylogeny and Character Evolution. Version 4.02. Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Mark Welch, D. & M. Meselson, 2000. Evidence for the evolution of bdelloid rotifers without sexual reproduction or genetic exchange. Science 288: 1211–1214.

    Article  PubMed  CAS  Google Scholar 

  • Martens, K. (ed.), 1998. Sex and Parthenogenesis: Evolutionary Ecology of Reproductive Modes in Non-Marine Ostracods. Backhuys Publications, Leiden.

    Google Scholar 

  • Martens, K. & G. Rossetti, 2002. On the Darwinulidae (Crustacea, Ostracoda) from Oceania, with the description of Vestalenula matildae n. sp. Invertebrate Systematics 16: 195–208.

    Article  Google Scholar 

  • Martens, K. & I. Schön, 2008. Opinion: ancient asexuals: darwinulids not exposed. Nature 453: 587.

    Google Scholar 

  • Martens, K., G. Rossetti & D. J. Horne, 2003. How ancient are ancient asexuals? Proceedings of the Royal Society of London Series B 270: 723–729.

    Article  PubMed  Google Scholar 

  • Martens, K., G. Rossetti, R. K. Butlin & I. Schön, 2005. Molecular and morphological phylogeny of the ancient asexual Darwinulidae (Crustacea, Ostracoda). Hydrobiologia 538: 153–165.

    Article  CAS  Google Scholar 

  • Martens, K., I. Schön, C. Meisch & D. J. Horne, 2008. Global diversity of ostracods (Ostracoda, Crustacea) in freshwater. Hydrobiologia 595: 185–193.

    Article  Google Scholar 

  • Martin, H. A., 2006. Cenozoic climatic change and the development of the arid vegetation in Australia. Journal of Arid Environments 66: 533–563.

    Article  Google Scholar 

  • Maynard Smith, J., 1980. Selection for recombination in a polygenic model. Genetic Research 35: 269–277.

    Article  Google Scholar 

  • Muller, H. J., 1932. Some genetic aspects of sex. American Naturalist 66: 118–138.

    Article  Google Scholar 

  • Muller, H. J., 1964. The relation of recombination to mutational advance. Mutational Research 1: 2–9.

    Google Scholar 

  • Panchal, M., 2007. The automation of nested clade phylogeographic analysis. Bioinformatics 23: 509–510.

    Article  PubMed  CAS  Google Scholar 

  • Pinto, R. L., C. E. F. Rocha & K. Martens, 2003. On two new species of the genus Vestalenula Rossetti & Martens, 1998 (Crustacea, Ostracoda, Darwinulidae) from semi-terrestrial habitats in Sao Paulo State (Brazil). Zoological Journal of the Linnean Society 139: 305–313.

    Article  Google Scholar 

  • Pinto, R. L., C. E. F. Rocha & K. Martens, 2004. On the genus Penthesilenula Rossetti & Martens, 1998 (Crustacea, Ostracoda, Darwinulidae) from (semi-) terrestrial habitats in São Paulo State (Brazil), with the description of a new species. Journal of Natural History 38: 2567–2589.

    Article  Google Scholar 

  • Posada, D., 2008. jModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25: 1253–1256.

    Article  PubMed  CAS  Google Scholar 

  • Posada, D., K. A. Crandall & A. R. Templeton, 2000. GeoDis: a program for the cladistic nested analysis of the geographical distribution of genetic haplotypes. Molecular Ecology 9: 487–488.

    Article  PubMed  CAS  Google Scholar 

  • Rossetti, G. & K. Martens, 1998. Taxonomic revision of the Recent and Holocene representatives of the family Darwinulidae (Crustacea, Ostracoda), with a description of three new genera. Bulletin van het Koninklijk Belgisch Instituut voor Natuurwetenschappen Biologie 68: 55–110.

    Google Scholar 

  • Roughgarden, J., 1991. The evolution of sex. American Naturalist 138: 934–953.

    Article  Google Scholar 

  • Schmidt, H. A., K. Strimmer, M. Vingron & A. von Haeseler, 2002. TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18: 502–504.

    Article  PubMed  CAS  Google Scholar 

  • Schön, I., 2001. Primers and PCR conditions for non-marine ostracods. BioTechniques 31: 1012–1016.

    PubMed  Google Scholar 

  • Schön, I., 2007. Did Pleistocene glaciations shape genetic patterns of European ostracods? A phylogeographic analysis of two species with asexual reproduction. Hydrobiologia 575: 33–50.

    Article  CAS  Google Scholar 

  • Schön, I. & K. Martens, 1998. Opinion: DNA-repair in an ancient asexual: a new solution to an old problem? Journal of Natural History 32: 943–948.

    Article  Google Scholar 

  • Schön, I. & K. Martens, 2003. No slave to sex. Proceedings of the Royal Society London Series B 270: 827–833.

    Article  Google Scholar 

  • Schön, I., R. K. Butlin, H. I. Griffiths & K. Martens, 1998. Slow molecular evolution in an ancient asexual ostracod. Proceedings of the Royal Society London Series B 265: 235–242.

    Article  Google Scholar 

  • Schön, I., K. Martens, K. Van Doninck & R. K. Butlin, 2003. Evolution in the slow lane: molecular rates of evolution in sexual and asexual ostracods (Crustacea: Ostracoda). Biological Journal of the Linnean Society 79: 93–100.

    Article  Google Scholar 

  • Schön, I., D. Lamatsch & K. Martens, 2008. Lessons to learn from ancient asexuals. In Egel, R. & D.-H. Lankenau (eds), Genomic Dynamics and Stability, Vol. 2. Meiosis and Recombination. Crossing Over and Disjunction. Springer Publishers, Berlin: 341–376.

    Google Scholar 

  • Schön, I., G. Rossetti & K. Martens, 2009. Ancient asexual darwinulids: ancient scandals or scandalous gossip? In Schön, I., K. Martens & P. Van Dijk (eds), Lost Sex. The Evolutionary Biology of Parthenogenesis. Springer Academic Publishers, Dordrecht: 217–240.

    Chapter  Google Scholar 

  • Schurko, A. M., M. Neiman & J. M. Logsdon, 2009. Signs of sex; what we know and how we know it. Trends in Ecology & Evolution 24: 208–217.

    Article  Google Scholar 

  • Smith, R. J., T. Kamiya & D. J. Horne, 2006. Living males of the ‘ancient’ asexual Darwinulidae (Ostracoda, Crustacea). Proceedings of the Royal Society London Series B 273: 1569–1578.

    Article  Google Scholar 

  • Swofford, D. L., 1998. PAUP. Phylogenetic Analysis Using Parsimony (and Other Methods), Version 4.0. Sunderland Associates, Sunderland, MA.

    Google Scholar 

  • Templeton, A. R., 1998. Nested clade analyses of phylogeographic data: testing hypotheses about gene flow and population history. Molecular Ecology 7: 381–397.

    Article  PubMed  CAS  Google Scholar 

  • Van Doninck, K., I. Schön, L. De Bruyn & K. Martens, 2002. A general purpose genotype in an ancient asexual. Oecologia 132: 205–212.

    Article  Google Scholar 

  • Van Doninck, K., I. Schön, F. Maes, L. De Bruyn & K. Martens, 2003. Ecological strategies in the ancient asexual animal group Darwinulidae. Freshwater Biology 48: 1285–1294.

    Article  Google Scholar 

  • Van Valen, L. M., 1973. A new evolutionary law. Evolutionary Theory 1: 1–30.

    Google Scholar 

  • White, T. J., T. Bruns, S. Lee & J. Taylor, 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In Innis, M. A., D. G. Gelfand, J. J. Sninsky & T. J. White (eds), PCR Protocols: A Guide to Methods and Applications. Academic Press, London: 315–322.

    Google Scholar 

Download references

Acknowledgements

IS thanks the Edith Cowan University, Perth, Western Australia, for two fellowships as visiting fellow in 2006 and 2008/2009. KM and IS are grateful to the Department of Environment and Conservation and Bennelongia for financial support during their two scientific stays in Perth (2006 and 2008/2009). KM and IS also acknowledge the Belgian Belspo (project MO/36/015) for funding and financial contribution of the project 1.5.172.09 (krediet aan navorsers) of the FWO Vlaanderen (Fund for Scientific Research, Flanders).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isa Schön.

Additional information

Handling editor: Luigi Naselli-Flores

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schön, I., Martens, K. & Halse, S. Genetic diversity in Australian ancient asexual Vestalenula (Ostracoda, Darwinulidae): little variability down under. Hydrobiologia 641, 59–70 (2010). https://doi.org/10.1007/s10750-009-0057-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-009-0057-6

Keywords

Navigation