, Volume 639, Issue 1, pp 185–196 | Cite as

Carbon:chlorophyll a ratio, assimilation numbers and turnover times of Lake Kinneret phytoplankton

  • Yosef Z. Yacobi
  • Tamar Zohary


Carbon to chlorophyll a (C:Chl) ratios, assimilation numbers (A.N.) and turnover times of natural populations of individual species and taxonomic groups were extracted from a long-term database of phytoplankton wet-weight biomass, chlorophyll a concentrations, and primary production in Lake Kinneret, Israel. From a database spanning more than a decade, we selected data for samples dominated by a single species or taxonomic group. The overall average of C:Chl was highest for cyanophytes and lowest for diatoms, while chlorophytes and dinoflagellates showed intermediate values. When converting chlorophyll a to algal cellular carbon this variability should be taken into account. The variability in C:Chl within each phylum and species (when data were available) was high and the variability at any particular sampling date tended to be greater than the temporal variability. The average chlorophyll a-normalized rate of photosynthetic activity of cyanophytes was higher and that of the dinoflagellates lower than that of other phyla. Turnover time of phytoplankton, calculated using primary productivity data at the depth of maximal photosynthetic rate, was longest in dinoflagellates and shortest in cyanophytes, with diatoms and chlorophytes showing intermediate values. The more extreme C:Chl and turnover times of dinoflagellates and cyanobacteria in comparison with chlorophytes and diatoms should be taken into consideration when employed in ecological modeling.


C:Chl ratio Monitoring database Optimal depth 



This composition was presented as a contributed paper at the Bat Sheva de Rothschild seminar on Phytoplankton in the Physical Environment—the 15th workshop of the International Association of Phytoplankton Taxonomy and Ecology (IAP). The data used in this study are part of the Lake Kinneret Monitoring Program funded by the Israeli Water and Sewage Authority. We would like to thank two anonymous reviewers for providing a constructive criticism that helped improving the clarity and quality of the presentation.


  1. Antia, N. J., C. D. McAllister, T. R. Paesons, K. Stephens & J. D. H. Strickland, 1963. Further measurements of primary production using a large-volume plastic sphere. Limnology and Oceanography 8: 166–183.Google Scholar
  2. APHA, 2005. Standard Methods for the Examination of Water and Wastewater, 21st ed. American Public Health Association, Washington, DC.Google Scholar
  3. Banse, K., 1977. Determining the carbon-to-chlorophyll ratio of natural phytoplankton. Marine Biology 41: 199–212.CrossRefGoogle Scholar
  4. Baumert, H. Z. & T. Petzoldt, 2008. The role of temperature, cellular quota and nutrient concentrations for photosynthesis, growth and light-dark acclimation in phytoplankton. Limnologica 38: 313–326.Google Scholar
  5. Behrenfeld, M. J., E. Maranon, D. A. Siegel & S. B. Hooker, 2002. A photoacclimation and nutrient based model of light-saturated photosynthesis for quantifying oceanic primary productivity. Marine Ecology Progress Series 228: 103–117.CrossRefGoogle Scholar
  6. Behrenfeld, M. J., E. Boss, D. A. Siegel & D. M. Shea, 2005. Carbon-based ocean productivity and phytoplankton physiology from space. Global Biogeochemical Cycles 19: GB1006.CrossRefGoogle Scholar
  7. Bruce, L. C., D. Hamilton, J. Imberger, G. Gal, M. Gophen, T. Zohary & K. D. Hambright, 2006. A numerical simulation of the role of zooplankton in C, N and P cycling in Lake Kinneret, Israel. Ecological Modelling 193: 412–436.CrossRefGoogle Scholar
  8. Cloern, J. E., C. Grenz & L. Vidergar-Lucas, 1995. An empirical model of the phytoplankton chlorophyll: carbon ratio-the conversion factor between productivity and growth rate. Limnology and Oceanography 40: 1313–1321.Google Scholar
  9. de Marsac, N. T., 2003. Phycobiliproteins and phycobilisomes: the early observations. Photosynthesis Research 76: 193–202.CrossRefGoogle Scholar
  10. Eckert, W., J. Imberger & A. Saggio, 2002. Biogeochemical response to physical forcing in the water column of a warm monomictic lake. Biogeochemistry 61: 291–307.CrossRefGoogle Scholar
  11. Falkowski, P. G., 1983. Light-shade adaptation and vertical mixing of marine phytoplankton: a comparative field study. Journal of Marine Research 41: 215–237.CrossRefGoogle Scholar
  12. Falkowski, P. G. & T. G. Owens, 1980. Light-shade adaptation: two strategies in marine phytoplankton. Plant Physiology 61: 592–595.CrossRefGoogle Scholar
  13. Flynn, K. J., 2003. Do we need complex mechanistic photoacclimation models for phytoplankton? Limnology and Oceanography 48: 2243–2249.CrossRefGoogle Scholar
  14. Gal, G., M. Hipsey, A. Parparov, U. Wagner, V. Makler & T. Zohary, 2009. Implementation of ecological modeling as an effective management and investigation tool: Lake Kinneret as a case study. Ecological Modelling 290: 1697–1718.CrossRefGoogle Scholar
  15. Håkanson, L. & V. V. Boulion, 2002. The Lake Foodweb. Backhuys Publishers, Leiden, The Netherlands.Google Scholar
  16. Hillebrand, H., C.-D. Dürselen, D. Kirschtel, U. Pollingher & T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35: 403–424.CrossRefGoogle Scholar
  17. Holm-Hansen, O., C. J. Lorenzen, R. W. Holmes & J. D. H. Strickland, 1965. Fluorometric determination of chlorophyll. Journal de Conseil International pour l’Exploration de la Mer 30: 3–15.Google Scholar
  18. Kirk, J. T. O., 1994. Light & Photosynthesis in Aquatic Ecosystems. Cambridge University Press, Cambridge.Google Scholar
  19. Langdon, C., 1988. On the causes of interspecific differences in the growth-irradiance relationship for phytoplankton. II. A general review. Journal of Plankton Research 10: 1291–1312.CrossRefGoogle Scholar
  20. Lefèvre, N., A. H. Taylor, F. J. Gilbert & R. J. Geider, 2003. Modeling carbon to nitrogen and carbon to chlorophyll a ratios in the ocean at low latitudes: evaluation of the role of physiological plasticity. Limnology and Oceanography 48: 1807–1976.CrossRefGoogle Scholar
  21. Llewellyn, C. A., J. R. Fishwick & J. C. Blackford, 2005. Phytoplankton community assemblage in the English Channel: a comparison using chlorophyll a derived from HPLC-CHEMTAX and carbon derived from microscopy cell counts. Journal of Plankton Research 27: 103–119.CrossRefGoogle Scholar
  22. Menden-Deuer, S. & E. J. Lessard, 2000. Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnology and Oceanography 45: 569–579.CrossRefGoogle Scholar
  23. Montagnes, D. J. S., J. A. Berges, P. J. Harrison & F. J. R. Taylor, 1994. Estimating carbon, nitrogen, protein, and chlorophyll a from volume in marine phytoplankton. Limnology and Oceanography 39: 1044–1059.CrossRefGoogle Scholar
  24. Pollingher, U., 1986. Phytoplankton periodicity in a subtropical lake (Lake Kinneret, Israel). Hydrobiologia 138: 127–138.CrossRefGoogle Scholar
  25. Pollingher, U., 1988. Freshwater armored dinoflagellates: growth, reproductive strategies and population dynamics. In Sandgren, C. (ed.), Growth and Reproduction Strategies of Freshwater Phytoplankton. Cambridge University Press, Cambridge: 134–174.Google Scholar
  26. Pollingher, U. & T. Berman, 1982. Relative contributions of net and nanophytoplankton to primary production in Lake Kinneret (Israel). Archiv für Hydrobiologie 96: 33–46.Google Scholar
  27. Pollingher, U., O. Hadas, Y. Z. Yacobi, T. Zohary & T. Berman, 1998. Aphanizomenon ovalisporum (Forti) in Lake Kinneret (Israel). Journal of Plankton Research 20: 1321–1339.CrossRefGoogle Scholar
  28. Reynolds, C. S., 2006. Ecology of Phytoplankton. Cambridge University Press, Cambridge.Google Scholar
  29. Riemann, B., P. Simonsen & L. Stensgaard, 1989. The carbon and chlorophyll content of phytoplankton from various nutrient regimes. Journal of Plankton Research 11: 1037–1045.CrossRefGoogle Scholar
  30. Steemann-Neilsen, E., 1952. The use of radioactive carbon (14C) for measuring organic production in the sea. Journal de Conseil International pour l’Exploration de la Mer 18: 117–140.Google Scholar
  31. Taylor, A. H., R. J. Geider & F. J. H. Gilbert, 1997. Seasonal and latitudinal dependencies of phytoplankton carbon-to-chlorophyll a ratios: results of a modelling study. Marine Ecology Progress Series 152: 51–66.CrossRefGoogle Scholar
  32. Usvyatsov, S. & T. Zohary, 2006. Lake Kinneret continuous time-depth chlorophyll record highlights major phytoplankton events. Verhandlungen der Internationale Vereinigung für Limnologie 29: 1131–1134.Google Scholar
  33. Utermöhl, H., 1958. Vervollkomnung der quantitativen Phytoplankton Methodik. Mitteilungen der Internationale Vereinigung für Limnologie 9: 1–38.Google Scholar
  34. Wetzel, R. G. & G. E. Likens, 2000. Limnological Analyses, 3rd ed. Springer, New York.Google Scholar
  35. Wynne, D., N. J. Patni, S. Aaronson & T. Berman, 1982. The relationship between nutrient status and chemical composition of Peridinium cinctum during the bloom in Lake Kinneret. Journal of Plankton Research 4: 125–136.CrossRefGoogle Scholar
  36. Yacobi, Y. Z., 2003. Seasonal variation of photosynthetic pigments in the dinoflagellate Peridinium gatunense (Dinophyceae) in Lake Kinneret Israel. Freshwater Biology 48: 1850–1858.CrossRefGoogle Scholar
  37. Yacobi, Y. Z., 2006. Temporal and vertical variation of chlorophyll a concentration, phytoplankton photosynthetic activity and light attenuation in Lake Kinneret: possibilities and limitations for simulation by remote-sensing. Journal of Plankton Research 28: 725–736.CrossRefGoogle Scholar
  38. Yacobi, Y. Z. & U. Pollingher, 1993. Phytoplankton composition and activity: response to fluctuation in lake volume and turbulence. Verhandlungen der Internationale Vereinigung für Limnologie 25: 796–799.Google Scholar
  39. Zohary, T., 2004a. Changes to the phytoplankton assemblage of Lake Kinneret after decades of a predictable, repetitive pattern. Freshwater Biology 49: 1355–1371.CrossRefGoogle Scholar
  40. Zohary, T. (ed.), 2004b. Lake Kinneret water quality management and optimization support system – phase 2. IOLR report T8/2004: 75 pp.Google Scholar
  41. Zonneveld, C., 1998. A cell-based model for the chlorophyll a to carbon ratio in phytoplankton. Ecological Modelling 113: 55–70.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Israel Oceanographic & Limnological Research Ltd., Yigal Allon Kinneret Limnological LaboratoryMigdalIsrael

Personalised recommendations