, Volume 639, Issue 1, pp 205–220 | Cite as

Convergence and divergence in organization of phytoplankton communities under various regimes of physical and biological control

  • Judit Padisák
  • Éva Hajnal
  • Luigi Naselli-Flores
  • Martin T. Dokulil
  • Peeter Nõges
  • Tamar Zohary


The hypothesis that physical constraints may be as important, if not more important, than biological ones in shaping the structure of phytoplankton assemblage was tested by analyzing long-term (11–29 years) phytoplankton series in eight lakes and nine sites located along a latitudinal gradient in the Northern hemisphere. Phytoplankton biomass was used and similarity of assemblages in same months of the annual data sets was then calculated by subtracting the Bray–Curtis dissimilarity index from 1. The extent of biological and physical forcing was partly based on “expert evaluation”: the importance of four physical (light availability, temperature, conductivity, and sediment stirring up) and five biological variables (basic nutrients [SRP-, DIN-, SRSi-availability] as estimators of competition straight, importance of grazing, and importance of parasitism) was evaluated month by month by arbitrarily scaling from 1 to 5 the intensity of each variable and then summing them in the appropriate subgroup. Since the number of physical variables is less than that of the biological ones, the latter was rescaled to reach the same maximum attainable value of physical variables. The results showed an extremely high variability, making evident that each lake, although showing the same metabolic processes, behaves as an individual with regard to its phytoplankton structure. More generally, it was possible to highlight a largely more important role of physical constraints in shaping both biomass and composition of phytoplankton. This is especially true in winter. In addition, the results were compared to the outcomes of the PEG model, since a plasticity in the structure of phytoplankton much greater than that reported in this widely acknowledged model has been recorded in the data set used. This high variability found in this study in relation to physical constraints might also explain the different patterns of phytoplankton growth observed from Northern temperate to Mediterranean lakes as well as those occurring in shallow and deep lakes.


Phytoplankton biomass Phytoplankton composition Similarity PEG model Biological control Ecosystem functioning 



Data analyses were supported by the Hungarian National Science Foundation (OTKA Nr. K 75552). Phytoplankton studies on Lake Stechlin were supported by the Leibniz-Institute for Aquatic Ecology and Inland Fishery (Berlin/Stechlin-Neuglobsow, Germany). The long-term record of phytoplankton in Lake Kinneret was conducted by Tatiana Fishbein and funded by the Israel Water Authority. Analysis of long-term recording of phytoplankton in Lake Arancio was possible thanks to a grant from the University of Palermo (11108/2007), in Võrtsjärv supported by SF0170011508 from EME and in Neusiedlersee by the Biologische Station Illmitz. This study was presented as a contributed paper at the Bat Sheva de Rothschild seminar on Phytoplankton in the Physical Environment – The 15th Workshop of the International Association of Phytoplankton Taxonomy and Ecology (IAP) – held in Ramot, Israel, November 23–30, 2008.

Supplementary material

10750_2009_21_MOESM1_ESM.pdf (168 kb)
Supplementary material 1 (PDF 169 kb)
10750_2009_21_MOESM2_ESM.pdf (71 kb)
Supplementary material 2 (PDF 71 kb)


  1. Agasild, H., P. Zingel, I. Tõnno, J. Haberman & T. Nõges, 2007. Contribution of different zooplankton groups in grazing on phytoplankton in shallow eutrophic Lake Võrtsjärv (Estonia). Hydrobiologia 584: 167–177.CrossRefGoogle Scholar
  2. Alvarez-Cobelas, M., C. Rojo & D. Angeler, 2005. Mediterranean limnology: current status, gaps and the future. Journal of Limnology 64: 13–29.Google Scholar
  3. Barone, R. & L. Naselli-Flores, 1994. Phytoplankton dynamics in a shallow, hypertrophic reservoir (Lake Arancio, Sicily). Hydrobiologia 289: 199–214.CrossRefGoogle Scholar
  4. Becker, V., V. L. M. Huszar, L. Naselli-Flores & J. Padisák, 2008. Phytoplankton equilibrium phases during thermal stratification in a deep subtropical water supply reservoir. Freshwater Biology 53: 952–963.CrossRefGoogle Scholar
  5. Casper, S. J., 1985. The phytoplankton. In Casper, S. J. (ed.), Lake Stechlin. A Temperate Oligotrophic Lake. Dr. W. Junk Publishers, Dordrecht, Boston, Lancaster: 157–195.Google Scholar
  6. Clements, F. E., 1916. Plant Succession: An Analysis of the Development of Vegetation. Carnegie Institute of Washington Publication 242, Washington, USA.Google Scholar
  7. Dittrich, M. & R. Koschel, 2002. Interactions between calcite precipitation (natural and artificial) and phosphorus cycle in the hardwater lake. Hydrobiologia 469: 49–57.CrossRefGoogle Scholar
  8. Dokulil, M., 1987. Long term occurrence of blue-green algae in Mondsee during eutrophication and after nutrient reduction with special reference to Oscillatoria rubescens. Schweizerische Zeitschrift für Hydrologie 49: 378.Google Scholar
  9. Dokulil, M., 1991. Populationsdynamik der Phytoplankton-Diatomeen im Mondsee seit 1957. Wasser und Abwasser 35: 53–75.Google Scholar
  10. Dokulil, M. T. & J. Mayer, 1996. Population dynamics and photosynthetic rates of a Cylindrospermopsis—Limnothrix association in a highly eutrophic urban lake, Alte Donau, Vienna, Austria. Algological Studies 83: 179–195.Google Scholar
  11. Dokulil, M. & C. Skolaut, 1986. Succession of phytoplankton in a deep stratifying lake: Mondsee, Austria. Hydrobiologia 138: 9–24.CrossRefGoogle Scholar
  12. Dokulil, M. T. & K. Teubner, 2002. The spatial coherence of alpine lakes. Verhandlungen der internationale Vereinigung für theoretische und angewandte Limnologie 28: 1861–1864.Google Scholar
  13. Dokulil, M. T. & K. Teubner, 2003a. Steady state phytoplankton assemblages during thermal stratification in deep alpine lakes. Do they occur? Hydrobiologia 502: 65–72.CrossRefGoogle Scholar
  14. Dokulil, M. T. & K. Teubner, 2003b. Eutrophication and restoration of shallow lakes—the concept of stable equilibria revisited. Hydrobiologia 506(509): 29–35.CrossRefGoogle Scholar
  15. Dokulil, M. T. & K. Teubner, 2005. Do phytoplankton assemblages correctly track trophic changes?—Assessment from contemporary and palaeolimnological data. Freshwater Biology 50: 1594–1604.CrossRefGoogle Scholar
  16. Dokulil, M., K. Teubner, A. Jagsch, U. Nickus, R. Adrian, D. Straile, T. Jankowski, A. Herzig & J. Padisák, 2009. The impact of climate change on lakes in Central Europe. In D. G. George (ed.), The Impact of Climate Change on European Lakes. Aquatic Ecology Series 4: 387–409, Springer, The Netherlands.Google Scholar
  17. Gleason, H., 1917. The structure and development of plant association. Bulletin of the Torrey Botanical Club 44: 463–481.CrossRefGoogle Scholar
  18. Gleason, H., 1926. Further views on the succession concept. Ecology 8: 299–326.CrossRefGoogle Scholar
  19. Hajnal, É. & J. Padisák, 2008. Analysis of long-term ecological status of Lake Balaton based on the ALMOBAL phytoplankton database. Hydrobiologia 599: 227–237.CrossRefGoogle Scholar
  20. Hambright, K. D. & R. Hershcovitch, 1998. Kinneret Limnological Laboratory Bibliography, 1968–1998. Israel Oceanographic and Limnological Research, Haifa.Google Scholar
  21. Honti, M., V. Istvanovics & A. Osztoics, 2007. Stability and change of phytoplankton communities in a highly dynamic environment—the case of large shallow Lake Balaton (Hungary). Hydrobiologia 581: 225–240.CrossRefGoogle Scholar
  22. Istvánovics, V., A. Clement, L. Somlyódy, A. Specziár, L. G. Tóth & J. Padisák, 2007. Updating water quality targets for shallow Lake Balaton (Hungary), recovering from eutrophication. Hydrobiologia 581: 305–318.CrossRefGoogle Scholar
  23. Koschel, R. & D. D. Adam, 2003. Preface: an approach to understanding a temperate oligotrophic lowland lake (Lake Stechlin, Germany). Archiv für Hydrobiologie/Advances in Limnology 58: 1–9.Google Scholar
  24. Löffler, H. (ed.), 1988. Alte Donau. Projektstudie im Auftrag der Wasserstraßendirektion. Eigenverlag, Vienna.Google Scholar
  25. Lund, J. W. G., C. Kipling & E. D. Le Cren, 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11: 143–170.CrossRefGoogle Scholar
  26. Naselli-Flores, L., 2003. Man-made lakes in Mediterranean semi-arid climate: the strange case of Dr Deep Lake and Mr Shallow Lake. Hydrobiologia 506(509): 13–21.CrossRefGoogle Scholar
  27. Naselli-Flores, L. & R. Barone, 2003. Steady-state assemblages in a Mediterranean hypertrophic reservoir. The role of Microcystis ecomorphological variability in maintaining an apparent equilibrium. Hydrobiologia 502: 133–143.CrossRefGoogle Scholar
  28. Naselli-Flores, L. & R. Barone, 2005. Water-level fluctuations in Mediterranean reservoirs: setting a dewatering threshold as a management tool to improve water quality. Hydrobiologia 548: 85–99.CrossRefGoogle Scholar
  29. Naselli-Flores, L. & R. Barone, 2007. Pluriannual morphological variability of phytoplankton in a highly productive Mediterranean reservoir (Lake Arancio, Southwestern Sicily). Hydrobiologia 578: 87–95.CrossRefGoogle Scholar
  30. Naselli-Flores, L., J. Padisák, M. T. Dokulil & I. Chorus, 2003. Equilibrium/steady-state concept in phytoplankton ecology. Hydrobiologia 502: 395–403.CrossRefGoogle Scholar
  31. Naselli-Flores, L., J. Padisák & M. Albay, 2007. Shape and size in phytoplankton ecology: do they matter? Hydrobiologia 578: 157–161.CrossRefGoogle Scholar
  32. Nõges, P., R. Adrian, O. Anneville, L. Arvola, T. Blenckner, D. G. George, T. Jankowski, M. Järvinen, S. C. Maberly, J. Padisák, D. Straile, K. Teubner & G. Weynenmeyer, 2009. The impact of variations in the climate on seasonal dynamics of phytoplankton. In George D. G. (ed.), The Impact of Climate Change on European Lakes. Aquatic Ecology Series 4: 253–274, Springer, The Netherlands. doi: 10.1007/978-90-481-2945-4_14
  33. Nõges, T. & P. Nõges, 1999. The effect of extreme water level decrease on hydrochemistry and phytoplankton in a shallow eutrophic lake. Hydrobiologia 409: 277–283.CrossRefGoogle Scholar
  34. Nõges, P. & T. Nõges, 2006. Indicators and criteria to assess ecological status of the large shallow temperate polymictic lakes Peipsi (Estonia/Russia) and Võrtsjärv (Estonia). Boreal Environment Research 11: 67–80.Google Scholar
  35. Nõges, P., M. Kägu & T. Nõges, 2007. Role of climate and agricultural practice in determining the matter discharge into large shallow Lake Võrtsjärv, Estonia. Hydrobiologia 581: 125–134.CrossRefGoogle Scholar
  36. Nõges, T., R. Laugaste, P. Nõges & I. Tõnno, 2008. Critical N:P ratio for cyanobacteria and N2-fixing species in the large shallow temperate lakes Peipsi and Võrtsjärv, North-East Europe. Hydrobiologia 599: 77–86.CrossRefGoogle Scholar
  37. Padisák, J., 2003. Phytoplankton. In O’Sullivan, P. E. & C. S. Reynolds (eds), The Lakes Handbook 1. Limnology and Limnetic Ecology. Blackwell Science Ltd., Oxford: 251–308.Google Scholar
  38. Padisák, J. & M. Dokulil, 1994. Meroplankton dynamics in a saline, turbulent, turbid shallow lake (Neusiedlersee, Austria and Hungary). Hydrobiologia 289: 23–42.CrossRefGoogle Scholar
  39. Padisák, J. & C. S. Reynolds, 1998. Selection of phytoplankton associations in Lake Balaton, Hungary, in response to eutrophication and restoration measures, with special reference to cyanoprokaryotes. Hydrobiologia 384: 41–53.CrossRefGoogle Scholar
  40. Padisák, J., C. S. Reynolds & U. Sommer (eds), 1993. Intermediate Disturbance Hypothesis in Phytoplankton Ecology. Developments in Hydrobiology 81. Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
  41. Padisák, J., F. A. R. Barbosa, R. Koschel & L. Krienitz, 2003a. Deep layer cyanoprokaryota maxima are constitutional features of lakes: examples from temperate and tropical regions. Archiv für Hydrobiologie/Advances in Limnology 58: 175–199.Google Scholar
  42. Padisák, J., W. Scheffler, P. Kasprzak, R. Koschel & L. Krienitz, 2003b. Interannual changes (1994–2000) of phytoplankton of Lake Stechlin. Archiv für Hydrobiologie/Advances in Limnology 58: 101–133.Google Scholar
  43. Padisák, J., W. Scheffler, C. Sípos, P. Kasprzak, R. Koschel & L. Krienitz, 2003c. Spatial and temporal pattern of development and decline of the spring diatom populations in Lake Stechlin in 1999. Archiv für Hydrobiologie/Advances in Limnology 58: 135–155.Google Scholar
  44. Padisák, J., W. Scheffler, R. Koschel & L. Krienitz, 2004. Seasonal patterns and interannual variability of phytoplankton in Lake Stechlin. Annual Report 2003 of the Leibnitz-Institut of Freshwater Ecology and Inland Fisheries, Berlin, ISSN 1432-508X: 105–116.Google Scholar
  45. Padisák, J., I. Grigorszky, G. Borics & É. Soróczki-Pintér, 2006. Use of phytoplankton assemblages for monitoring ecological status of lakes within the Water Framework Directive: the assemblage index. Hydrobiologia 553: 1–14.CrossRefGoogle Scholar
  46. Padisák, J., L. O. Crossetti & L. Naselli-Flores, 2009a. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621: 1–19.CrossRefGoogle Scholar
  47. Padisák, J., É. Hajnal, R. Koschel & L. Krienitz, 2009b. The importance of winter phytoplankton composition in contrasting lakes: a deep stratifying and a shallow polymictic. Verhandlungen der internationale Vereinigung für theoretische und angewandte Limnologie 30: 757–760.Google Scholar
  48. Podani, J., 1988. Syn-Tax III. User’s manual. Abstracta Botanica 12: 1–183.Google Scholar
  49. Pollingher, U., 1986. Phytoplankton periodicity in a subtropical lake (Lake Kinneret, Israel). Hydrobiologia 138: 127–138.CrossRefGoogle Scholar
  50. Raven, J. A. & S. C. Maberly, 2009. Phytoplankton nutrition and related mixotrophy. In Lickens, G. E. (ed.), Encyclopedia of Inland Waters. Elsevier, Amsterdam.Google Scholar
  51. Reynolds, C. S., 1972. Growth, gas vacuolation and buoyancy in a natural population of a planktonic blue-green alga. Freshwater Biology 2: 87–106.CrossRefGoogle Scholar
  52. Reynolds, C. S., 1984. The Ecology of Freshwater Phytoplankton. Cambrige University Press, Cambridge.Google Scholar
  53. Reynolds, C. S., 1988. Functional morphology and the adaptive strategies of freshwater phytoplankton. In Sandgren, C. D. (ed.), Growth and Reproductive Strategies of Freshwater Phytoplankton. Cambrige University Press, Cambrigde: 338–433.Google Scholar
  54. Reynolds, C. S., 1994. The long, the short and the stalled: on the attributes of phytoplankton selected by physical mixing in lakes and rivers. Hydrobiologia 289: 9–21.CrossRefGoogle Scholar
  55. Reynolds, C. S. R., 2006. Ecology of Phytoplankton. Cambridge University Press, Cambridge.Google Scholar
  56. Reynolds, C. S., V. Huszar, C. Kruk, L. Naselli-Flores & S. Melo, 2002. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research 24: 417–428.CrossRefGoogle Scholar
  57. Salmaso, N. & J. Padisák, 2007. Morpho-Functional Groups and phytoplankton development in two deep lakes (Lake Garda, Italy and Lake Stechlin, Germany). Hydrobiologia 578: 97–112.CrossRefGoogle Scholar
  58. Scheffler, W. & J. Padisák, 2000. Stephanocostis chantaicus (Bacillariophyceae): morphology and population dynamics of a rare centric diatom growing in winter under ice in the oligotrophic Lake Stechlin, Germany. Archiv für Hydrobiologie/Algological Studies 133: 49–69.Google Scholar
  59. Serruya, C. (ed.), 1978. Lake Kinneret. Dr. Junk Publishers, The Hague.Google Scholar
  60. Sommer, U., 1985. Comparisons between steady state and not-steady state competitions: experiments with natural phytoplankton. Limnology and Oceanography 30: 335–346.CrossRefGoogle Scholar
  61. Sommer, U., Z. M. Gliwicz, W. Lampert & A. Duncan, 1986. The PEG-model of seasonal succession of planktonic events in freshwaters. Archiv für Hydrobiologie 106: 433–471.Google Scholar
  62. Watt, A. S., 1947. Pattern and process in the plant community. Journal of Ecology 35: 1–22.CrossRefGoogle Scholar
  63. Zohary, T., 2004. Changes to the phytoplankton assemblage of Lake Kinneret after decades of a predictable, repetitive pattern. Freshwater Biology 49: 1355–1371.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Judit Padisák
    • 1
    • 2
  • Éva Hajnal
    • 1
  • Luigi Naselli-Flores
    • 3
  • Martin T. Dokulil
    • 4
  • Peeter Nõges
    • 5
  • Tamar Zohary
    • 6
  1. 1.Department of LimnologyUniversity of PannoniaVeszprémHungary
  2. 2.Leibniz-Institute for Aquatic Ecology and Inland FisheryStechlin-NeuglobsowGermany
  3. 3.Department of Botanical SciencesUniversity of PalermoPalermoItaly
  4. 4.Department of Limnology and HydrobotanyUniversity of ViennaWienAustria
  5. 5.Institute of Agricultural and Environmental Sciences, Center for LimnologyEstonian University of Life SciencesTartuEstonia
  6. 6.Kinneret Limnological LaboratoryIsrael Oceanographic and Limnological Research LtdMigdalIsrael

Personalised recommendations