Advertisement

Hydrobiologia

, Volume 650, Issue 1, pp 145–159 | Cite as

Mitochondrial DNA diversity and relationships of endemic charrs of the genus Salvelinus from Lake Kronotskoye (Kamchatka Peninsula)

  • A. G. Oleinik
  • L. A. Skurikhina
CHARR

Abstract

Lake Kronotskoye (the Kronotsky Biosphere State Reserve, south-eastern Kamchatka Peninsula) contains three closely related resident morphotypes charrs, which are considered to be either independent species (white charr Salvelinus albus, longhead charr Salvelinus kronocius, Schmidt’s charr Salvelinus schmidti) or a united lacustrine-riverine charrs, represented by several phenotypes. Salvelinus malma malma is isolated from the lake charr populations by an upstream migration barrier in the Kronotskaya River, which flows out of the lake. We examined the level of genetic variability and divergence of mtDNA both between charrs from Kronotsky Lake and between resident lacustrine charrs and the hypothetical ancestor species S. m. malma. The RFLP-PCR analysis was used to examine six regions (ND1/ND2, ND3/ND4L/ND4, ND5/ND6, COI/COII/A8, A8/A6/COIII/ND3, and Cytb/D-loop), comprising ~80% of the mtDNA. Significantly different levels of diversity were found among the populations of lacustrine charrs. S. albus and S. schmidti had the highest indices of mtDNA diversity among the investigated populations from the different habitats. Heterogeneity tests revealed highly significant differentiation among lake populations and among riverine (Kronotskaya River) and lake (Lake Kronotskoye) populations of charrs, indicating their reproductive isolation. Hierarchical analysis of molecular variance revealed the following regularities of diversity distribution: the high proportion of interpopulation variation (93.25%) and low but statistically significant subdivision between charr populations (6.75%, P < 0.001). Results of the present study suggest that the populations of S. albus, S. kronocius, S. schmidti belong to the S. m. malma phylogenetic group. The divergence value of mtDNA of resident charrs (0.0357–0.0010%) does not exceed the intraspecific variability of S. m. malma. The analysis of the mtDNA haplotypes genealogy of charrs showed that the low values of nucleotide divergence reflect a short period from the beginning of divergence from the ancestral lineages and are due to ancestral polymorphism, as well as to haplotype exchange between the diverged phylogenetic groups as a result of introgressive hybridization.

Keywords

Salvelinus Charr mtDNA RFLP analysis Genetic divergence Sympatric populations 

Notes

Acknowledgments

The authors are deeply grateful to S. V. Frolov (IMB FEB RAS) for long-term cooperation in the study of charrs of the genus Salvelinus, including collection, taxonomic determination of the material, and discussion of the results. We thank two anonymous reviewers, whose comments and remarks also improved the manuscript. The material from the Lake Kronotskoye basin was collected by S. V. Frolov (grant FEB RAS No. 03-3-E-06-031) and N. S. Romanov under the agreement on scientific cooperation between IMB FEB RAS and the Kronotskiy State Biosphere Reserve. The study was performed with financial support from the Presidium of RAS (projects 06-I-P10-015, 06-I-P11-025), as well as the Russian Foundation for Basic Research of the Russian Academy of Science (grants 98-04-4819, 00-04-63057).

Supplementary material

10750_2009_4_MOESM1_ESM.doc (182 kb)
Supplementary material 1 (DOC 182 kb)
10750_2009_4_MOESM2_ESM.doc (2.9 mb)
Supplementary material 2 (DOC 2929 kb)

References

  1. Adams, C. E. & F. A. Huntingford, 2002. Inherited differences in head allometry in polymorphic Arctic charr from Loch Rannoch. Scotland Journal of Fish Biology 60: 515–520.CrossRefGoogle Scholar
  2. Adams, C. E., D. J. Hamilton, I. McCarthy, A. J. Wilson, A. Grant, G. Alexander, S. Waldron, S. S. Snorrason, M. M. Ferguson & S. Skúlason, 2006. Does breeding site fidelity drive phenotypic and genetic sub-structuring of a population of Arctic charr? Evolutionary Ecology 20: 11–26.CrossRefGoogle Scholar
  3. Alekseyev, S. S., M. Y. Pichugin & V. P. Samusenok, 2000. Diversity of Arctic charrs from Transbaikalia in meristic characters, their position in the complex of Salvelinus alpinus, and the origin of sympatric forms. Journal of Ichthyology 40: 279–297.Google Scholar
  4. Avise, J. C., 2000. Phylogeography: The History and Formation of Species. Harvard University Press, Cambridge, MA: 447 pp.Google Scholar
  5. Bandelt, H.-J., P. Foster & A. Rohl, 1999. Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution 16: 37–48.PubMedGoogle Scholar
  6. Behnke, R. J., 1980. A systematic review of the genus Salvelinus. In Balon, E. K. (ed.), Charrs: Salmonid Fishes of the Genus Salvelinus. Dr. W. Junk Publishers, The Hague: 441–480.Google Scholar
  7. Behnke, R. J., 1989. Interpreting the phylogeny of Salvelinus. Physiology and Ecology Japan Special Vol. 1: 35–48.Google Scholar
  8. Braitseva, O. A., I. V. Melekestsev, I. S. Evteeva & E. G. Lupikina, 1968. Stratigraphy of Quaternary Deposits and Glaciations of Kamchatka. Nauka, Moscow: 277 pp (in Russian).Google Scholar
  9. Brunner, P. C., M. R. Douglas & L. Bernatchez, 1998. Microsatellite and mitochondrial DNA assessment of population structure and stocking effects in Arctic charr Salvelinus alpinus (Teleostei: Salmonidae) from central Alpine lakes. Molecular Ecology 7: 209–223.CrossRefGoogle Scholar
  10. Brunner, P. C., M. R. Douglas, A. Osinov, C. C. Wilson & L. Bernatchez, 2001. Holarctic phylogeography of Arctic charr (Salvelinus alpinus L.) inferred from mitochondrial DNA sequences. Evolution 55: 573–586.CrossRefPubMedGoogle Scholar
  11. Chereshnev, I. A., V. V. Volobuev, A. V. Shestakov & S. V. Frolov, 2002. Lososevidnye ryby Severo-Vostoka Rossii [Salmoniformes of North-East Russia]. Dalnauka, Vladivostok: 496 pp (in Russian).Google Scholar
  12. Churikov, D. & A. J. Gharrett, 2002. Comparative phylogeography of the two pink salmon broodlines: an analysis based on a mitochondrial DNA genealogy. Molecular Evolution 11: 1077–1101.Google Scholar
  13. Churikov, D., M. Matsuoka, X. Luan, A. K. Gray, V. A. Brykov & A. J. Gharrett, 2001. Assessment of concordance among genealogical reconstructions from various mtDNA segments in three species of Pacific salmon (genus Oncorhynchus). Molecular Ecology 10: 2329–2339.CrossRefPubMedGoogle Scholar
  14. Danzmann, R. G., M. M. Ferguson, S. Skúlason, S. S. Snorrason & D. L. G. Noakes, 1991. Mitochondrial DNA diversity among four sympatric morphs of Arctic charr, Salvelinus alpinus L., from Thingvallavatn,Iceland. Journal of Fish Biology 39: 649–659.CrossRefGoogle Scholar
  15. Dlugosch, K. M. & I. M. Parker, 2008. Founding events in species invasions: genetic variation, adaptive evolution, and role of multiple introductions. Molecular Ecology 17: 431–449.CrossRefPubMedGoogle Scholar
  16. Dynes, J., P. Margan, L. Bernatchez & M. A. Rodriguez, 1999. Genetic and morphological variation between two forms of lacustrine brook charr. Journal of Fish Biology 54: 955–972.CrossRefGoogle Scholar
  17. Excoffier, L., P. E. Smouse & J. M. Quattro, 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131: 479–491.PubMedGoogle Scholar
  18. Felsenstein, J., 1985. Confidence limits on phylogenies: an approach using bootstrap. Evolution 39: 783–791.CrossRefGoogle Scholar
  19. Frolov, S. V., 2003. Significance of karyotypes studing for determination of relationships among chars of Kamchatka. In Maksimenkov, V. V., R. S. Moiseev, A. M. Tokranov & O. A. Chernjagina (eds), Sokhranenie bioraznoobraya Kamchatski i prilegayushchikh morei [Materials of IV Scientific Conference]. Izd. KamchatNIRO, Petropavlovsk-Kamchatski: 153–164.Google Scholar
  20. Gharrett, A. J., A. K. Gray & V. A. Brykov, 2001. Mitochondrial DNA variation in Alaskan coho salmon, Onchorhynchus kisutch. Fishery Bulletin 99: 528–544.Google Scholar
  21. Gislason, D., M. M. Ferguson, S. Skúlason & S. S. Snorrason, 1999. Rapid and coupled phenotypic and genetic divergence in Icelandic Arctic charr (Salvelinus alpinus). Canadian Journal of Fisheries and Aquatic Sciences 56: 2229–2234.CrossRefGoogle Scholar
  22. Glubokovsky, M. K., 1977. Salvelinus albus sp. n. from the basin of the Kamchatka River. The Soviet Journal of Marine Biology 3: 281–286.Google Scholar
  23. Glubokovsky, M. K., 1995. Evolutionary Biology of Salmonid Fishes. Nauka, Moscow: 343 pp (in Russian).Google Scholar
  24. Guo, S. & E. Thompson, 1992. Performing the exact test of Hardy–Weinberg proportion for multiple alleles. Biometrics 48: 361–372.CrossRefPubMedGoogle Scholar
  25. Hopkins, D. M., 1972. The paleogeography and climatic history of Beringia during late Cenozoic time. Inter-Nord 12: 121–150.Google Scholar
  26. Hutchison, D. W. & A. R. Templeton, 1999. Correlation of pairwise genetic and geographic distance measures: inferring the relative influences of gene flow and drift on the distribution of genetic variability. Evolution 53: 1898–1914.CrossRefGoogle Scholar
  27. Klemetsen, A., J. M. Elliott, R. Knudsen & P. Sørensen, 2002. Evidence for genetic differences in the offspring of two sympatric morphs of Arctic charr. Journal of Fish Biology 60: 933–950.CrossRefGoogle Scholar
  28. Mann, D. H. & T. D. Hamilton, 1995. Late Pleistocene and Holocene paleoenvironments of the north Pacific coast. Quaternary Science Reviews 14: 449–471.CrossRefGoogle Scholar
  29. McElroy, D., P. Moran, E. Bermingham & I. Kornfield, 1992. REAP: an integrated environment for the manipulation and phylogenetic analysis of restriction data. Journal of Heredity 83: 153–158.Google Scholar
  30. Nei, M., 1973. Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences USA 70: 3321–3323.CrossRefGoogle Scholar
  31. Nei, M., 1987. Molecular Evolutionary Genetics. Columbia University Press, New York: 512 pp.Google Scholar
  32. Nei, M. & W.-H. Li, 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences USA 76: 5269–5273.CrossRefGoogle Scholar
  33. Nei, M. & F. Tajima, 1981. DNA polymorphism detectable by restriction endonucleases. Genetics 97: 145–163.PubMedGoogle Scholar
  34. Neigel, J. E. & J. C. Avise, 1986. Phylogenetic relationships of mitochondrial DNA under various demographic models of speciation. In Nevo, E. & S. Karlin (eds), Evolutionary Processes and Theory. Academic Press, New York: 515–534.Google Scholar
  35. Oleinik, A. G. & L. A. Skurikhina, 2007. Genetic divergence of sympatric charrs of the genus Salvelinus from Nachikinskoe Lake (Kamchatka). Russian Journal of Genetics 43: 910–917.CrossRefGoogle Scholar
  36. Oleinik, A. G., L. A. Skurikhina & V. A. Brykov, 2004a. Genetic differentiation of Dolly Varden char (Salvelinus malma) and Taranetz char (Salvelinus taranetzi) inferred from PCR-RFLP analysis of mitochondrial DNA. Russian Journal of Genetics 40: 300–306.CrossRefGoogle Scholar
  37. Oleinik, A. G., L. A. Skurikhina, S. V. Frolov, V. A. Brykov & I. A. Chereshnev, 2004b. Differences between two subspecies of Dolly Varden, Salvelinus malma, revealed by RFLP-PCR analysis of mitochondrial DNA. Environmental Biology of Fishes 69: 449–459.CrossRefGoogle Scholar
  38. Oleinik, A. G., L. A. Skurikhina & V. A. Brykov, 2007. Divergence of the Salvelinus species mitochondrial DNA from northeastern Asia. Ecology of Freshwater Fish 16: 87–98.CrossRefGoogle Scholar
  39. Oleinik, A. G., L. A. Skurikhina & V. A. Brykov, 2010. Genetic divergence of the Salvelinus albus and Salvelinus malma malma mitochondrial DNA. Russian Journal of Genetics 46(1).Google Scholar
  40. Osinov, A. G., 2002. Arctic charr Salvelinus alpinus of Zabaikalia and Taimyr: genetic differentiation and origin. Voprosy Ikhtiologii 42: 149–160.Google Scholar
  41. Radchenko, O. A., E. A. Salmenkova & V. T. Omel’chenko, 2006. Variation of cytochrome b gene in sympatric chars from Kronotsky lake (Kamchatka Peninsula). Russian Journal of Genetics 42: 172–181.CrossRefGoogle Scholar
  42. Reshetnikov, Yu. S., N. G. Bogutzkaya, E. D. Vasilieva, E. A. Dorofeeva, A. M. Naseka, O. A. Popova, K. A. Savvaitova, V. G. Sideleva & L. I. Sokolov, 1997. An annotaded check-list of the freshwater fishes of Russia. Journal of Ichtyology 37: 687–736.Google Scholar
  43. Roff, D. & P. Bentzen, 1989. The statistical analysis of mitochondrial DNA polymorphisms: chi-square and the problem of small samples. Molecular Biology and Evolution 5: 539–545.Google Scholar
  44. Salmenkova, E. A., V. T. Omel’chenko, O. A. Radchenko, N. V. Gordeeva, G. A. Rubtsova & N. S. Romanov, 2005. Genetic divergence of chars of the genus Salvelinus from Kronotsky Lake (Kamchatka Peninsula). Russian Journal of Genetics 41: 897–906.CrossRefGoogle Scholar
  45. Sambrook, J., E. F. Fritsch & T. Maniatis, 1989. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York: 1626 pp.Google Scholar
  46. Savvaitova, K. A., 1989. Arctic Charrs: Structure of Population Systems and Perspectives of Commercial Use. Agropromizdat, Moscow: 223 pp (in Russian).Google Scholar
  47. Schneider, S., D. Roessli & L. Excoffier, 2000. Arlequin, Version 2.000: A Software for Population Genetic Data Analysis. Genetics and Biometry Laboratory, University of Geneva, Switzerland.Google Scholar
  48. Skúlason, S., S. S. Snorrason & B. Jonsson, 1999. Sympatric morphs, populations and speciation in freshwater fish with emphasis on Arctic charr. In Magurran, A. E. & R. M. May (eds), Evolution of Biological Diversity. Oxford University Press, Oxford: 70–92.Google Scholar
  49. Slatkin, M. & R. R. Hudson, 1991. Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics 129: 555–562.PubMedGoogle Scholar
  50. Sneath, P. H. A. & R. R. Sokal, 1983. Numerical Taxonomy. Freeman, San Francisco: 573 pp.Google Scholar
  51. Tajima, F., 1983. Evolutionary relationship of DNA sequences in finite populations. Genetics 105: 437–460.PubMedGoogle Scholar
  52. Viktorovsky, R. M., 1978. Mekhanizmi vidoobrazovaniya u goltzov Kronotskogo ozera. Nauka, Moscow: 110 pp (in Russian).Google Scholar
  53. Weir, B. S. & C. C. Cockerham, 1984. Estimating F-statistics for the analysis of population structure. Evolution 38: 1358–1370.CrossRefGoogle Scholar
  54. Westgaard, J. I., A. Klemetsen & R. Knudsen, 2004. Genetic differences between two sympatric morphs of Arctic charr confirmed by microsatellite DNA. Journal of Fish Biology 65: 1185–1194.CrossRefGoogle Scholar
  55. Wilson, A., D. Gislason, S. Skúlason, S. S. Snorrason, C. E. Adams, G. Alexander, R. G. Danzmann & M. M. Ferguson, 2004. Population genetic structure of Arctic charr, Salvelinus alpinus from northwest Europe on large and small spatial scales. Molecular Ecology 13: 1129–1142.CrossRefPubMedGoogle Scholar
  56. Zaykin, D. V. & A. I. Pudovkin, 1993. Two programs to estimate significance of Chi-square using pseudo-probability test. Journal of Heredity 84: 152.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.A.V. Zhirmunsky Institute of Marine BiologyFar Eastern Branch Russian Academy of SciencesVladivostokRussia

Personalised recommendations