Advertisement

Hydrobiologia

, Volume 620, Issue 1, pp 77–89 | Cite as

Long-term change in limnology and invertebrates in Alaskan boreal wetlands

  • Robin M. Corcoran
  • James R. Lovvorn
  • Patricia J. Heglund
Primary research paper

Abstract

Climate change is more pronounced at high northern latitudes, and may be affecting the physical, chemical, and biological attributes of the abundant wetlands in boreal forests. On the Yukon Flats, located in the boreal forest of northeast Alaska, wetlands originally sampled during 1985–1989 were re-sampled for water chemistry and macroinvertebrates in summer 2001–2003. Wetlands sampled lost on average 19% surface water area between these periods. Total nitrogen and most metal cations (Na, Mg, and Ca, but not K) increased between these periods, whereas total phosphorus and chlorophyll a (Chl a) declined. These changes were greater in wetlands that had experienced more drying (decreased surface area). Compared with 1985–1989, densities of cladocerans, copepods, and ostracods in both June and August were much higher in 2002–2003, whereas densities of amphipods, gastropods, and chironomid larvae were generally lower. In comparisons among wetlands in 2002–2003 only, amphipod biomass was lower in wetlands with lower Chl a, which might help explain the decline of amphipods since the late 1980s when Chl a was higher. The decline in Chl a corresponded to greatly increased zooplankton density in June, suggesting a shift in carbon flow from scrapers and deposit-feeders to water-column grazers. Declines in benthic and epibenthic deposit-feeding invertebrates suggest important food web effects of climate change in otherwise pristine wetlands of the boreal forest.

Keywords

Climate change Drying of wetlands Invertebrate communities Limnological change Wetland food webs 

References

  1. Arctic Climate Impact Assessment, 2004. Impacts of a warming Arctic. Cambridge University Press, UK.Google Scholar
  2. Bayley, S. E. & C. M. Prather, 2003. Do wetland lakes exhibit alternative stable states? Submersed aquatic vegetation and chlorophyll in western boreal shallow lakes. Limnology and Oceanography 48: 2335–2345.Google Scholar
  3. Carvalho, L. & A. Kirika, 2003. Changes in shallow lake functioning: Response to climate change and nutrient reduction. Hydrobiologia 506–509: 789–796.CrossRefGoogle Scholar
  4. Den Oude, P. J. & R. D. Gulati, 1988. Phosphorus and nitrogen excretion rates of zooplankton from the eutrophic Loosdrecht lakes, with notes on other P sources for phytoplankton requirements. Hydrobiologia 169: 379–390.CrossRefGoogle Scholar
  5. Ford, J. & B. L. Bedford, 1987. The hydrology of Alaskan wetlands, U.S.A.: A review. Arctic and Alpine Research 19: 209–229.CrossRefGoogle Scholar
  6. Gersper, P. L., V. Alexander, S. A. Barkley, R. J. Barsdate & P. S. Flint, 1980. The soils and their nutrients. In Brown, J., P. C. Miller, L. L. Tieszen & F. L. Bunnell (eds), An Arctic Ecosystem: The Coastal Tundra at Barrow, Alaska. Dowden, Hutchinson & Ross, Stroudsburg, PA: 219–254.Google Scholar
  7. Gregory-Eaves, I., J. P. Smol, B. P. Finney, D. R. S. Lean & M. E. Edwards, 2000. Characteristics and variation in lakes along a north–south transect in Alaska. Archiv für Hydrobiologie 147: 193–223.Google Scholar
  8. Hann, B. J. & L. G. Goldsborough, 1997. Responses of a prairie wetland to press and pulse addition of inorganic nitrogen and phosphorus: Invertebrate community structure and interactions. Archiv für Hydrobiologie 140: 169–194.Google Scholar
  9. Hansen, J. & S. Lebedeff, 1987. Global trends of measured surface air temperature. Journal of Geophysical Research 92D: 13345–13372.CrossRefGoogle Scholar
  10. Hanson, M. A. & M. G. Butler, 1994. Responses of plankton, turbidity, and macrophytes to biomanipulation in a shallow prairie lake. Canadian Journal of Fisheries and Aquatic Sciences 51: 1180–1188.CrossRefGoogle Scholar
  11. Hart, E. A. & J. R. Lovvorn, 2003. Algal vs. macrophyte inputs to food webs of inland saline wetlands. Ecology 84: 3317–3326.CrossRefGoogle Scholar
  12. Hart, E. A. & J. R. Lovvorn, 2005. Patterns of macroinvertebrate abundance in inland saline wetlands: A trophic analysis. Hydrobiologia 541: 45–54.CrossRefGoogle Scholar
  13. Heglund, P. J., 1988. Relations between waterbird use and limnological characteristics on Yukon Flats National Wildlife Refuge, Alaska. M.S. Thesis, University of Missouri, Columbia.Google Scholar
  14. Heglund, P. J., 1992. Patterns of wetland use among aquatic birds in the interior boreal forest region on Alaska. Ph.D. Dissertation, University of Missouri, Columbia, USA.Google Scholar
  15. Heglund, P. J. & J. R. Jones, 2003. Limnology of shallow lakes in the Yukon Flats National Wildlife Refuge, interior Alaska. Lake and Reservoir Management 19: 133–140.Google Scholar
  16. Hessen, D. O. & T. Anderson, 1992. The algae interface: Feedback mechanisms linked to elemental ratios and nutrient cycling. Archiv für Hydrobiologie 35: 111–120.Google Scholar
  17. Hodkinson, I. D., N. R. Webb, J. S. Bale, W. Block, S. J. Coulson & A. T. Strathdee, 1998. Global change and arctic ecosystems: Conclusions and predictions from experiments with terrestrial invertebrates on Spitsbergen. Arctic and Alpine Research 30: 306–313.CrossRefGoogle Scholar
  18. Jones, J. B., K. C. Petrone, J. C. Finlay, L. D. Hinzman & W. R. Bolton, 2005. Nitrogen loss from watersheds of interior Alaska underlain with discontinuous permafrost. Geophysical Research Letters 32: L02401.CrossRefGoogle Scholar
  19. Jorgenson, J. K., H. E. Welch & M. F. Curtis, 1992. Response of Amphipoda and Trichoptera to lake fertilization in the Canadian Arctic. Canadian Journal of Fisheries and Aquatic Sciences 49: 2354–2362.Google Scholar
  20. Jorgenson, M. T., C. H. Racine, J. C. Walters & T. E. Osterkamp, 2001. Permafrost degradation and ecological changes associated with a warming climate in Central Alaska. Climatic Change 48: 551–579.CrossRefGoogle Scholar
  21. Lawson, D. E., J. C. Strasser, J. D. Strasser, S. A. Arcone, A. J. Delaney & C. Williams, 1996. Geological and geophysical investigations of the hydrogeology of Fort Wainwright, Alaska. U.S. Army Corps of Engineers, Cold Regions Research and Engineering Laboratory Report 96–4.Google Scholar
  22. Lehman, J. T., 1980. Release and cycling of nutrients between planktonic algae and herbivores. Limnology and Oceanography 25: 620–632.CrossRefGoogle Scholar
  23. McDonald, M. E., A. E. Hershey & M. C. Miller, 1996. Global warming impacts on lake trout in arctic lakes. Limnology and Oceanography 41: 1102–1108.Google Scholar
  24. Moser, K. A., J. P. Smol, G. M. MacDonald & C. P. S. Larsen, 2002. 19th Century eutrophication of a remote boreal lake: A consequence of climate warming? Journal of Paleolimnology 28: 269–281.CrossRefGoogle Scholar
  25. Murkin, H. R. & J. A. Kadlec, 1986. Relationship between waterfowl and macroinvertebrate densities in a northern prairie marsh. Journal of Wildlife Management 50: 212–217.CrossRefGoogle Scholar
  26. Nürnberg, G. K., 1996. Trophic state of clear and colored, soft- and hardwater lakes with special consideration of nutrients, anoxia, phytoplankton and fish. Lake and Reservoir Management 12: 420–431.CrossRefGoogle Scholar
  27. Osterkamp, T. E. & V. E. Romanovsky, 1999. Evidence for warming and thawing of discontinuous permafrost in Alaska. Permafrost Periglacial Processes 10: 17–37.CrossRefGoogle Scholar
  28. Parmesan, C. & G. Yohe, 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421: 37–42.PubMedCrossRefGoogle Scholar
  29. Pienitz, R., J. P. Smol & D. R. S. Lean, 1997. Physical and chemical limnology of 59 lakes located between the southern Yukon and Tuktoyaktuk Peninsula, Northwest Territories (Canada). Canadian Journal of Fisheries and Aquatic Sciences 54: 330–346.CrossRefGoogle Scholar
  30. Pomeroy, L. R. & W. J. Wiebe, 1988. Energetics of microbial food webs. Hydrobiologia 159: 7–18.Google Scholar
  31. Prairie, Y. T., C. M. Duarte & J. Kalff, 1989. Unifying nutrient-chlorophyll relationships in lakes. Canadian Journal of Fisheries and Aquatic Sciences 46: 1176–1182.CrossRefGoogle Scholar
  32. Riordan, B., 2004. Using remote sensing to examine changes of closed-basin surface water area in interior Alaska from 1950–2002. Ph.D. Dissertation, University of Alaska, Fairbanks, USA.Google Scholar
  33. Riordan, B., D. Verbyla & A. D. McGuire, 2006. Shrinking ponds in subarctic Alaska based on 1950–2002 remotely sensed images. Journal of Geophysical Research 111: G04002.CrossRefGoogle Scholar
  34. Rouse, W. R., M. S. V. Douglas, R. E. Hecky, A. E. Hershey, G. W. Kling, L. Lesack, P. Marsh, M. McDonald, B. J. Nicholson, N. T. Roulet & J. P. Smol, 1997. Effects of climate change on the freshwaters of arctic and subarctic North America. Hydrological Processes 11: 873–902.CrossRefGoogle Scholar
  35. Scheffer, M., S. H. Hosper, M.-L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. Trends in Ecology and Evolution 8: 275–279.CrossRefGoogle Scholar
  36. Schindler, D. W., 1997. Widespread effects of climatic warming on freshwater ecosystems in North America. Hydrological Processes 11: 1043–1067.CrossRefGoogle Scholar
  37. Schindler, D. W., 1998. A dim future for boreal waters and landscapes. BioScience 48: 157–164.CrossRefGoogle Scholar
  38. Schindler, D. W., S. E. Bayley, B. R. Parker, K. G. Beaty, D. R. Cruikshank, E. J. Fee, E. V. Schindler & M. P. Stainton, 1996. The effects of climatic warming on the properties of boreal lakes and streams at the Experimental Lakes Area, northwestern Ontario. Limnology and Oceanography 41: 1004–1017.CrossRefGoogle Scholar
  39. Scrimgeour, G. J., W. M. Tonn, C. A. Paszkowski & C. Goater, 2001. Benthic macroinvertebrate biomass and wildfires: Evidence for enrichment of boreal subarctic lakes. Freshwater Biology 46: 367–378.CrossRefGoogle Scholar
  40. Smith, L. C., Y. Sheng, G. M. MacDonald & L. D. Hinzman, 2005. Disappearing Arctic lakes. Science 308: 1429.PubMedCrossRefGoogle Scholar
  41. Sommer, U., Z. M. Gliwicz, W. Lampert & A. Duncan, 1986. The PEG-model of seasonal succession of planktonic events in fresh waters. Archiv für Hydrobiologie 106: 433–471.Google Scholar
  42. Sterner, R. W., 1990. The ratio of nitrogen to phosphorus resupplied by herbivores: Zooplankton and the competitive arena. American Naturalist 136: 209–229.CrossRefGoogle Scholar
  43. Strauss, E. A., W. K. Dodds & C. C. Edler, 1994. The impact of nutrient pulses on trophic interactions in a farm pond. Journal of Freshwater Biology 9: 217–228.Google Scholar
  44. Swadling, K. M., R. Pienitz & T. Nogrady, 2000. Zooplankton community composition of lakes in the Yukon and Northwest Territories (Canada): Relationship to physical and chemical limnology. Hydrobiologia 431: 211–224.CrossRefGoogle Scholar
  45. Thomas, J. D. & P. W. G. Daldorph, 1994. The influence of nutrient and organic enrichment on a community dominated by macrophytes and gastropod molluscs in a eutrophic drainage canal: Relevance to snail control and conservation. Journal of Applied Ecology 31: 571–588.CrossRefGoogle Scholar
  46. Thomas, D. W., J. Blondel, P. Perret, M. M. Lambrechts & J. R. Speakman, 2001. Energetic and fitness costs of mismatching resource supply and demand in seasonally breeding birds. Science 291: 2598–2600.PubMedCrossRefGoogle Scholar
  47. van Breemen, N., A. Jenkins, R. F. Wright, D. J. Beerling, W. J. Arp, F. Berendse, C. Beier, R. Collins, D. van Dam, L. Rasmussen, P. S. J. Verburg & M. A. Wills, 1998. Impacts of elevated carbon dioxide and temperature on a boreal forest ecosystem (CLIMEX Project). Ecosystems 1: 345–351.CrossRefGoogle Scholar
  48. Walker, I. R., A. J. Levesque, R. Pienitz & J. P. Smol, 2003. Freshwater midges of the Yukon and adjacent Northwest Territories: A new tool for reconstructing Beringian paleoenvironments? Journal of the North American Benthological Society 22: 323–337.CrossRefGoogle Scholar
  49. Weller, G., P. Anderson & B. Wang, 1999. Preparing for a Changing Climate: The Potential Consequences of Climate Variability and Change, Alaska. Alaska Center for Global Change and Arctic System Research, University of Alaska, Fairbanks, USA.Google Scholar
  50. Williams, J. R., 1962. Geologic reconnaissance of the Yukon Flats District, Alaska. U.S. Geologic Survey Bulletin 1111-H: 289–331.Google Scholar
  51. Winder, M. & D. E. Schindler, 2004. Climate change uncouples trophic interactions in an aquatic ecosystem. Ecology 85: 2100–2106.CrossRefGoogle Scholar
  52. Wrona, F. J., T. D. Prowse, J. D. Reist, J. E. Hobbie, L. M. J. Levesque & W. F. Vincent, 2006. Climate change effects on aquatic biota, ecosystem structure and function. Ambio 35: 359–369.PubMedCrossRefGoogle Scholar
  53. Yoshikawa, K. & L. D. Hinzman, 2003. Shrinking thermokarst ponds and groundwater dynamics in discontinuous permafrost near Council, Alaska. Permafrost Periglacial Processes 14: 151–160.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Robin M. Corcoran
    • 1
    • 2
  • James R. Lovvorn
    • 1
  • Patricia J. Heglund
    • 3
    • 4
  1. 1.Department of ZoologyUniversity of WyomingLaramieUSA
  2. 2.US Fish and Wildlife ServiceSonny Bono Salton Sea National Wildlife RefugeCalipatriaUSA
  3. 3.US Geological SurveyUpper Midwest Environmental Science CenterLa CrosseUSA
  4. 4.US Fish and Wildlife Service, Region 3National Wildlife Refuge SystemLaCrosseUSA

Personalised recommendations