, Volume 616, Issue 1, pp 193–215 | Cite as

A character-based analysis of the evolution of jellyfish blooms: adaptation and exaptation

  • Michael N Dawson
  • William M. Hamner


Mass occurrence—aggregation, blooming, or swarming—is a remarkable feature of a subset of usually diverse scyphozoan clades, suggesting it is evolutionarily beneficial. If so, it should be associated with one or more phenotypic characteristics that are advantageous and which facilitate occurrence en masse. Here, we examine the evolution of morphological, ecological, and life history characteristics of medusozoans, focusing on the taxa that occur en masse. By tracing the evolution of aggregating, blooming, and swarming phenotypes, organismal traits, and environmental settings on an up-to-date synoptic phylogeny of classes and orders of Medusozoa, we are able to hypothesize circumstances that enable taxa to occur en masse. These include character states and character complexes related to podocyst formation, strobilation, oral arms, large size, and shallow-water habitat. These evolutionarily advantageous traits may be adaptations that evolved in response to selection for individual traits such as survival during periods of few resources, feeding on pulsed resources, and fecundity. These adaptations were apparently subsequently coopted by selection for reproductive success which favored mass occurrence. By considering the distribution of traits describing other phylogenetic lineages—when appropriately detailed ecological and systematic descriptions become available—it may be possible to predict which species are evolutionarily predisposed to form problematic blooms if environmental conditions permit.


Ecology Evolution Environment Morphology Phylogeny Phenotype Scyphozoa 



Detailed critiques by M. Arai, P. Hamner, L. Martin, K. Pitt, J. Purcell, H. Swift, and two anonymous reviewers, and discussion with K. Bayha, L. Gomez Daglio, J. Lehman, and J. Vo helped improve and organize the content and presentation of this manuscript. WMH thanks the organizers of the 2nd International Jellyfish Blooms Symposium, K. Pitt and J. Seymour, for the invitation to present a plenary address at the meeting, and we thank the Editors for their patience and industry in preparing this volume. Allen G. Collins kindly provided the datamatrix for analyses in Fig. 2. This work was supported in part by grant DEB-0717078 from the US National Science Foundation to MND and AGC.

Supplementary material

10750_2008_9591_MOESM1_ESM.pdf (65 kb)
(PDF 65 kb)


  1. Albert, D. J., 2005. Reproduction and longevity of Aurelia labiata in Roscoe Bay, a small bay on the Pacific coast of Canada. Journal of the Marine Biological Association of the United Kingdom 85: 575–581.Google Scholar
  2. Albert, D. J., 2007. Aurelia labiata medusae (Scyphozoa) in Roscoe Bay avoid tidal dispersion by vertical migration. Journal of Sea Research 57: 281–287.Google Scholar
  3. Albert, D. J., 2008. Adaptive behaviours of the jellyfish Aurelia labiata in Roscoe Bay on the west coast of Canada. Journal of Sea Research 59: 198–201.Google Scholar
  4. Aleyev, Yu. G., 1977. Nekton. Dr. W. Junk, The Hague, vi + 435pGoogle Scholar
  5. Alldredge, A. L., 1984. The quantitative significance of gelatinous zooplankton as pelagic consumers. In Fasham, M. J. R. (ed.), Flows of Energy and Materials in Marine Ecosystems: Theory and Practice. Plenum, New York: 407–433.Google Scholar
  6. Arai, M. N., 1992. Active and passive factors affecting aggregations of hydromedusae: a review. Scientia Marina 56: 99–108.Google Scholar
  7. Arai, M. N., 1997. A Functional Biology of Scyphozoa. Chapman and Hall, London.Google Scholar
  8. Arai, M. N., 2001. Pelagic coelenterates and eutrophication: a review. Hydrobiologia 451 (Developments in Hydrobiology) 155: 69–87.Google Scholar
  9. Arai, M. N. & I. M. Chan, 1989. Two types of excretory pores in the hydrozoan medusa Aequorea victoria (Murbach and Shearer, 1902). Journal of Plankton Research 11: 609–614.Google Scholar
  10. Armbruster, W. S., 1992. Phylogeny and the evolution of plant-animal interactions. BioScience 42: 12–20.Google Scholar
  11. Bailey, K. M. & R. S. Batty, 1983. Laboratory study of predation by Aurelia aurita on larvae of cod, flounder, plaice and herring: development and vulnerability to capture. Marine Biology 83: 287–291.Google Scholar
  12. Baker, A. C., 2003. Flexibility and specificity in coral-algal symbiosis: diversity, ecology, and biogeography of Symbiodinium. Annual Reviews in Ecology Evolution and Systematics 34: 661–689.Google Scholar
  13. Behmer, S. P. & A. Joern, 2008. Coexisting generalist herbivores occupy unique nutritional feeding niches. Proceedings of the National Academy of Sciences of the USA 105: 1977–1982.PubMedGoogle Scholar
  14. Bolton, T. F. & W. M. Graham, 2004. Morphological variation among populations of an invasive jellyfish. Marine Ecology Progress Series 278: 125–139.Google Scholar
  15. Bonsall, M. B. & M. P. Hassell, 1997. Apparent competition structures ecological assemblages. Nature 388: 371–373.Google Scholar
  16. Bouillon, J., 1999. Hydromedusae. In Boltovskoy, D. (ed.), South Atlantic Zooplankton. Backhuys, Leiden: 385–465.Google Scholar
  17. Brodeur, R. D., H. Sugisaki & G. L. Hunt Jr, 2002. Increases in jellyfish biomass in the Bering Sea: implications for the ecosystem. Marine Ecology Progress Series 233: 89–103.Google Scholar
  18. Brooks, D. R. & D. A. McClennan, 2002. The nature of diversity–an evolutionary voyage of discovery. University of Chicago Press, Chicago.Google Scholar
  19. Cartwright, P., S. L. Halgedahl, J. R. Hendricks, R. D. Jarrard, A. C. Marques, A. G. Collins & B. S. Lieberman, 2007. Exceptionally preserved jellyfishes from the Middle Cambrian. PLoS ONE 2(10): e1121.PubMedGoogle Scholar
  20. Chapman, G., 1966. The structure and function of the mesoglea. In Rees, W. J. (ed.), The Cnidaria and their Evolution. Academic Press, London: 147–168.Google Scholar
  21. Colin, S. P. & J. H. Costello, 2002. Morphology, swimming performance and propulsive mode of six co-occurring hydromedusae. The Journal of Experimental Biology 205: 427–437.PubMedGoogle Scholar
  22. Colin, S. P., J. H. Costello & H. Kordula, 2006. Upstream foraging by medusae. Marine Ecology Progress Series 327: 143–155.Google Scholar
  23. Collins, A. G., 2002. Phylogeny of Medusozoa and the evolution of cnidarian life cycles. Journal of Evolutionary Biology 15: 418–432.Google Scholar
  24. Collins, A. G. P., Marques A. C. Schuchert, T. Jankowski, M. Medina & B. Schierwater, 2006. Medusozoan phylogeny and character evolution clarified by new large and small subunit rDNA data and an assessment of the utility of phylogenetic mixture models. Systematic Biology 55: 97–115.PubMedGoogle Scholar
  25. Costello, J. H. & S. P. Colin, 1995. Flow and feeding by swimming scyphomedusae. Marine Biology 124: 399–406.Google Scholar
  26. Cuddington, K. M. & P. Yodzis, 1999. Black noise and population persistence. Proceedings of the Royal Society of London B 266: 969–973.Google Scholar
  27. Cushing, D. H., 1975. The natural mortality of the plaice. Journal du Conseil International pour l’Exploration de la Mer 36: 150–157.Google Scholar
  28. Cushing, D. H., 1983. Are fish larvae too dilute to affect the density of their food organisms? Journal of Plankton Research 5: 847–854.Google Scholar
  29. Cushing, D. H., 1984. The gadoid outburst in the North Sea. Journal du Conseil International pour l’Exploration de la Mer 41: 159–166.Google Scholar
  30. Dabiri, J. O., S. P. Colin & J. H. Costello, 2007. Morphological diversity of medusan lineages constrained by animal-fluid interactions. The Journal of Experimental Biology 210: 1868–1873.PubMedGoogle Scholar
  31. D’Ambra, I., J. H. Costello & F. Bentivegna, 2001. Flow and prey capture by the scyphomedusa Phyllorhiza punctata von Lendenfeld, 1884. Hydrobiologia 451: 223–227.Google Scholar
  32. Darwin, C. R., 1874. The descent of man, and selection in relation to sex, 2nd ed. Appleton, New York.Google Scholar
  33. Daryanabard, R. & M. N. Dawson, 2008. Jellyfish blooms: Crambionella orsini (Scyphozoa, Rhizostomeae) in the Gulf of Oman, Iran, 2002–2003. Journal of the Marine Biological Association of the UK 88: 477–483.Google Scholar
  34. Dawson, M. N., 2004. Some implications of molecular phylogenetics for understanding biodiversity in jellyfishes, with emphasis on Scyphozoa. Hydrobiologia 530(531): 249–260.Google Scholar
  35. Dawson, M. N. & W. M. Hamner, 2003. Geographic variation and behavioral evolution in marine plankton: the case of Mastigias (Scyphozoa: Rhizostomeae). Marine Biology 143: 1161–1174.Google Scholar
  36. Dawson, M. N. & W. M. Hamner, 2008. A biophysical perspective on dispersal and the geography of evolution in marine and terrestrial systems. Journal of the Royal Society Interface 5: 135–150.Google Scholar
  37. Dawson, M. N., L. E. Martin & L. K. Penland, 2001. Jellyfish swarms, tourists, and the Christ-child. Hydrobiologia 451 (Developments in Hydrobiology) 155: 131–144.Google Scholar
  38. deBeer, G. R. & J. S. Huxley, 1924. Studies in dedifferentiation. V. Dedifferentiation and reduction in Aurelia. Quarterly Journal of Microscopical Science 68: 471–479.Google Scholar
  39. Decker, M. B., C. W. Brown, R. R. Hood, J. E. Purcell, T. F. Gross, J. C. Matanoski, R. O. Bannon & E. M. Setzler-Hamilton, 2007. Predicting the distribution of the scyphomedusa Chrysaora quinquecirrha in Chesapeake Bay. Marine Ecology Progress Series 329: 99–113.Google Scholar
  40. de Lafontaine, Y. & W. C. Leggett, 1987. Effect of container size on estimates of mortality and predation rates in experiments with macrozooplankton and larval fish. Canadian Journal of Fisheries and Aquatic Sciences 44: 1534–1543.Google Scholar
  41. Denton, E. J. & T. I. Shaw, 1962. The buoyancy of gelatinous marine animals. Journal of Physiology 161: 14P–15P.Google Scholar
  42. de Queiroz, K., 1996. Including the characters of interest during tree reconstruction and the problem of circularity and bias in studies of character evolution. American Naturalist 148: 700–708.Google Scholar
  43. Donoghue, M. J., 2005. Key innovations, convergence, and success: macroevolutionary lessons from plant phylogeny. Paleobiology 31: 77–93.Google Scholar
  44. Doyle, T. K., J. D. R. Houghton, S. M. Buckley, G. C. Hays & J. Davenport, 2007. The broad-scale distribution of five jellyfish species across a temperate coastal environment. Hydrobiologia 579: 29–39.Google Scholar
  45. Dreanno, C., K. Matsumura, N. Dohmae, K. Takio, H. Hirota, R. R. Kirby & A. S. Clare, 2006. An alpha(2)-macroglobulin-like protein is the cue to gregarious settlement of the barnacle Balanus amphitrite. Proceedings of the National Academy of Sciences of the USA 103: 14396–14401.PubMedGoogle Scholar
  46. Dybas, C. L., 2002. Jellyfish ‘blooms’ could be sign of ailing seas. Washington Post 06 May 2002: A09.Google Scholar
  47. Fautin, D. G. & R. W. Buddemeier, 2004. Adaptive bleaching: a general phenomenon. Hydrobiologia 530(531): 459–467.Google Scholar
  48. García, J. R. & E. Durbin, 1993. Zooplanktivorous predation by large scyphomedusae Phyllorhiza punctata (Cnidaria: Scyphozoa) in Laguna Joyuda. Journal of Experimental Marine Biology and Ecology 173: 71–93.Google Scholar
  49. Gershwin, L. & A. G. Collins, 2002. A preliminary phylogeny of Pelagiidae (Cnidaria, Scyphozoa), with new observations of Chrysaora colorata comb. nov. Journal of Natural History 36: 127–148.Google Scholar
  50. Gilbert, J. J. & C. E. Williamson, 1983. Sexual dimorphism in zooplankton (Copepoda, Cladocera, and Rotifera). Annual Review of Ecology and Systematics 14: 1–33.Google Scholar
  51. Gotelli, N. J., 2001. A primer of ecology, 3rd ed. Sinauer, Sunderland.Google Scholar
  52. Goulet, T. L., 2006. Most corals may not change their symbionts. Marine Ecology Progress Series 321: 1–7.Google Scholar
  53. Graham, W. M., D. L. Martin, D. L. Felder, V. L. Asper & H. M. Perry, 2003. Ecological and economic implications of a tropical jellyfish invader in the Gulf of Mexico. Biological Invasions 5: 53–69.Google Scholar
  54. Graham, W. M., F. Pagès & W. M. Hamner, 2001. A physical context for gelatinous zooplankton aggregations: a review. Hydrobiologia 451 (Developments in Hydrobiology) 155: 199–212.Google Scholar
  55. Hamner, W. M & M. N Dawson, 2008. A systematic review of the evolution of jellyfish blooms: advantageous aggregations and adaptive assemblages. Hydrobiologia. doi: 10.1007/s10750-008-9620-9.Google Scholar
  56. Hamner, W. M., P. P. Hamner & S. W. Strand, 1994. Sun compass migration by Aurelia aurita (Scyphozoa): population persistence versus dispersal in Saanich Inlet, British Columbia. Marine Biology 119: 347–356.Google Scholar
  57. Hamner, W. M. & I. R. Hauri, 1981. Long-distance horizontal migrations of zooplankton (Scyphomedusae: Mastigias). Limnology and Oceanography 26: 414–423.CrossRefGoogle Scholar
  58. Hamner, W. M. & R. M. Jenssen, 1974. Growth, degrowth, and irreversible cell differentiation in Aurelia aurita. American Zoologist 14: 833–849.Google Scholar
  59. Hamner, W. M., M. S. Jones & P. P. Hamner, 1995. Swimming, feeding, circulation, and vision in the Australian box jellyfish, Chironex fleckeri (Cnidaria; Cubozoa). Marine and Freshwater Research 46: 985–990.Google Scholar
  60. Hanski, I., L. Hansson & H. Henttonen, 1991. Specialist predators, generalist predators, and the microtine rodent cycle. Journal of Animal Ecology 60: 353–367.Google Scholar
  61. Hansson, L. J., 1997. Capture and digestion of the scyphozoan jellyfish Aurelia aurita by Cyanea capillata and prey response to predator contact. Journal of Plankton Research 19: 195–208.Google Scholar
  62. Hjort, J., 1914. Fluctuations in the great fisheries of Northern Europe viewed in light of biological research. Rapports et Procès-Verbeaux des Réunions du Conseil International pour l’Exploration de la Mer 20: 1–228.Google Scholar
  63. Hofmann, D. K. & G. Crow, 2002. Induction of larval metamorphosis in the tropical scyphozoan Mastigias papua: striking similarity with upside down-jellyfish Cassiopea spp. (with notes on related species). Vie et Milieu 52: 141–147.Google Scholar
  64. Holland, B. S., M. N. Dawson, G. L. Crow & D. K. Hofmann, 2004. Global phylogeography of Cassiopea (Scyphozoa: Rhizostomae): Molecular evidence for cryptic species and multiple Hawaiian invasions. Marine Biology 145: 1119–1128.Google Scholar
  65. Holst, S., I. Sötje, H. Tiemann & G. Jarms, 2007. Life cycle of the rhizostome jellyfish Rhizostoma octopus (L.) (Scyphozoa, Rhizostomeae), with studies on cnidocysts and statoliths. Marine Biology 151: 1695–1710.Google Scholar
  66. Huang, M., J. Hu & Y. Wang, 1985. Preliminary study on the breeding habits of edible jellyfish in Hangzhou Wan Bay. Journal of Fisheries of China 9: 239–246. In Chinese; English abstract.Google Scholar
  67. Hunt, J. C. & D. J. Lindsay, 1998. Observations on the behavior of Atolla (Scyphozoa: Coronatae) and Nanomia (Hydrozoa: Physonectae): use of the hypertrophied tentacle in prey capture. Plankton Biology and Ecology 45: 239–242.Google Scholar
  68. Hyman, L. H., 1940. Observations and experiments on the physiology of medusae. Biological Bulletin (Woods Hole) 79: 282–296.Google Scholar
  69. Ives, A. R., Á. Einarsson, V. A. A. Jansen & A. Gardarsson, 2008. High-amplitude fluctuations and alternative dynamical states of midges in Lake Myvatn. Nature 452: 84–87.PubMedGoogle Scholar
  70. Jarms, G., H. Tiemann & U. Båmstedt, 2002. Development and biology of Periphylla periphylla (Scyphozoa: Coronatae) in a Norwegian fjord. Marine Biology 141: 647–657.Google Scholar
  71. Kooi, B. W., L. D. J. Kuiper & S. A. L. M. Kooijman, 2004. Consequences of symbiosis for food web dynamics. Journal of Mathematical Biology 49: 227–271.PubMedGoogle Scholar
  72. Kramp, P. L., 1961. Synopsis of the medusae of the world. Journal of the Marine Biological Association of the United Kingdom 40: 1–469.Google Scholar
  73. Larson, R. J., 1979. Feeding in coronate medusa (Class Scyphozoa, Order Coronatae). Marine Behaviour and Physiology 6: 123–129.Google Scholar
  74. Larson, R. J., 1986. Pelagic scyphomedusae (Scyphozoa: Coronatae and Semaeostomeae) of the Southern Ocean. Biology of the Antarctic Seas. Antarctic Research Series 41: 59–165.Google Scholar
  75. Larson, R. J., 1992. Riding Langmuir circulations and swimming in circles: a novel form of clustering behavior by the scyphomedusa Linuche unguiculata. Marine Biology 112: 229–235.Google Scholar
  76. Lawton, J., 1988. More time means more variation. Nature 334: 563.Google Scholar
  77. Lucas, C. H., 2001. Reproduction and life history strategies of the common jellyfish, Aurelia aurita, in relation to its ambient environment. Hydrobiologia 451: 229–246.Google Scholar
  78. Lucas, C. H. & S. Lawes, 1998. Sexual reproduction of the scyphomedusa Aurelia aurita in relation to temperature and variable food supply. Marine Biology 131: 629–638.Google Scholar
  79. Luckow, M. & A. Bruneau, 1997. Circularity and independence in phylogenetic tests of ecological hypotheses. Cladistics 13: 145–151.Google Scholar
  80. Maddison, W. P. & D. R. Maddison, 1989. Interactive analysis of phylogeny and character evolution using the computer program MacClade. Folia Primatologica (Basel) 53: 190–202.Google Scholar
  81. Marques, A. C. & A. G. Collins, 2004. Cladistic analysis of Medusozoa and cnidarian evolution. Invertebrate Biology 123: 23–42.Google Scholar
  82. Martin, L. E., 1999. The Population Biology and Ecology of Aurelia sp. (Scyphozoa: Semaeostomeae) in a Tropical Meromictic Marine lake in Palau, Micronesia. Ph.D. thesis, University of California, Los Angeles: 250 pp.Google Scholar
  83. Mayer, A. G., 1910. Medusae of the World, III: the Scyphomedusae. Carnegie Institute, Washington.Google Scholar
  84. Mills, C. E., 2001. Jellyfish blooms: are populations increasing globally in response to changing ocean conditions? Hydrobiologia 451 (Developments in Hydrobiology) 155: 55–68.Google Scholar
  85. Morris, A. K., 2006, Zooplankton Aggregations in California Coastal Zones, Ph.D. thesis, University of California, Los Angeles: 309 pp.Google Scholar
  86. Omori, M. & E. Nakano, 2001. Jellyfish fisheries in southeast Asia. Hydrobiologia 451 (Developments in Hydrobiology) 155: 19–26.Google Scholar
  87. Ottersen, G. & H. Loeng, 2000. Covariability in early growth and year-class strength of Barents Sea cod, haddock, and herring: the environmental link. ICES Journal of Marine Science 57: 339–348.Google Scholar
  88. Peach, M. B. & K. A. Pitt, 2005. Morphology of the nematocysts of the medusae of two scyphozoans, Catostylus mosaicus and Phyllorhiza punctata (Rhizostomae): implications for capture of prey. Invertebrate Biology 124: 98–108.Google Scholar
  89. Pennak, R. W., 1956. The fresh-water jellyfish Craspedacusta in Colorado with some remarks on its ecology and morphological degenerataion. Transactions of the American Microscopical Society 75: 324–331.Google Scholar
  90. Pitt, K. A. & M. J. Kingsford, 2000. Reproductive biology of the edible jellyfish Catostylus mosaicus (Rhizostomeae). Marine Biology 137: 791–799.Google Scholar
  91. Purcell, J. E., 1989. Predation on fish larvae and eggs by the hydromedusa Aequorea victorea at a herring spawning ground in British Columbia. Canadian Journal of Fisheries and Aquatic Sciences 46: 1415–1427.CrossRefGoogle Scholar
  92. Purcell, J. E., 2005. Climate effects on formation of jellyfish and ctenophore blooms. Journal of the Marine Biological Association of the United Kingdom 85: 461–476.Google Scholar
  93. Purcell, J. E., U. Bamstedt & A. Bamstedt, 1999. Prey, feeding rates, and asexual reproduction rates of the introduced oligohaline hydrozoan Moerisia lyonsi. Marine Biology 134: 317–325.Google Scholar
  94. Purcell, J. E., S. Uye & W.-T. Lo, 2007. Anthropogenic causes of jellyfish blooms and their direct consequences for humans: a review. Marine Ecology Progress Series 350: 153–174.Google Scholar
  95. Rakow, K. C. & W. M. Graham, 2006. Orientation and swimming mechanics by the scyphomedusa Aurelia sp. in shear flow. Limnology and Oceanography 51: 1097–1106.CrossRefGoogle Scholar
  96. Ricklefs, R. E. & G. L. Miller, 1999. Ecology, 4th ed. W. H. Freeman, New York.Google Scholar
  97. Ronquist, F., 2004. Bayesian inference of character evolution. Trends in Ecology and Evolution 19: 475–481.PubMedGoogle Scholar
  98. Rottini Sandrini, L. & M. Avian, 1983. Biological cycle of Pelagia noctiluca: morphological aspects of the development from planula to ephyra. Marine Biology 74: 169–174.Google Scholar
  99. Ruppert, E. E. & K. J. Carle, 1983. Morphology of metazoan circulatory systems. Zoomorphology 103: 193–208.Google Scholar
  100. Russell, F. S., 1970. The Medusae of the British Isles. II Pelagic Scyphozoa with a Supplement to the First Volume on Hydromedusae, Cambridge University Press, Cambridge.Google Scholar
  101. Schneider, G., 1988. Larvae production of the common jelly-fish Aurelia aurita in the Western Baltic 1982–1984. Kieler Meeresforschungen 6: 295–300.Google Scholar
  102. Seipel, K. & V. Schmid, 2006. Mesodermal anatomies in cnidarian polyps and medusae. International Journal of Developmental Biology 50: 589–599.PubMedGoogle Scholar
  103. Shanks, A. L. & W. M. Graham, 1987. Orientated swimming in the jellyfish Stomolophus meleagris L. Agassiz (Scyphozoan: Rhizostomida). Journal of Experimental Marine Biology and Ecology 108: 159–169.Google Scholar
  104. Shine, R., 1988. The evolution of large body size in females: a critique of Darwin’s “fecundity advantage” model. The American Naturalist 131: 124–131.Google Scholar
  105. Shine, R., 1989. Ecological causes for the evolution of sexual dimorphism: a review of the evidence. The Quarterly Review of Biology 64: 419–461.PubMedGoogle Scholar
  106. Sinclair, M., 1988. Marine Populations. Washington Sea Grant Program, Seattle.Google Scholar
  107. Stenseth, N. C., A. Mysterud, G. Ottersen, J. W. Hurrell, K.-S. Chan & M. Lima, 2002. Ecological effects of climate fluctuations. Science 297: 1292–1296.PubMedGoogle Scholar
  108. Stiasny, G., 1921. Studien über rhizostomeen. In van Oort, E. D. (ed.), Capita Zoologica. Martinus Njhoff, Gravenhage.Google Scholar
  109. Stiasny, G. & H. van der Maaden, 1943. Über scyphomedusen aus dem Ochotskishen und Kamtschatka Meer nebst einer kritik der Genera Cyanea und Desmonema. Zoologische Jahrbücher Abteilung für Systematik 76: 227–266.Google Scholar
  110. Straehler-Pohl, I. & G. Jarms, 2005. Life cycle of Carybdea marsupialis Linnaeus, 1758 (Cubozoa, Carybdeidae) reveals metamorphosis to be a modified strobilation. Marine Biology 147: 1271–1277.Google Scholar
  111. Strand, S. W. & W. M. Hamner, 1988. Predatory behavior of Phacellophora camtschatica and size-selective predation upon Aurelia aurita (Scyphozoa: Cnidaria) in Saanich Inlet, British Columbia. Marine Biology 99: 409–414.Google Scholar
  112. Sugiura, Y., 1964. On the life-history of rhizostome medusae. II. Indispensability of zooxanthellae for strobilation in Mastigias papua. Embryologia 8: 223–233.Google Scholar
  113. Tamburri, M. N., R. K. Zimmer & C. A. Zimmer, 2007. Mechanisms reconciling gregarious larval settlement with adult cannibalism. Ecological Monographs 77: 255–268.Google Scholar
  114. Tanner, J. E., 2002. Consequences of density-dependent heterotrophic feeding for a partial autotroph. Marine Ecology Progress Series 227: 293–304.Google Scholar
  115. Thompson, J. N., S. L. Nuismer & R. Gomulkiewicz, 2002. Coevolution and maladaptation. Integrative and Comparative Biology 42: 381–387.Google Scholar
  116. Thuesen, E. V., L. D. Rutherford Jr., P. L. Brommer, K. Garrison, M. A. Gutowska & T. Towanda, 2005. Intragel oxygen promotes hypoxia tolerance of scyphomedusae. Journal of Experimental Biology 208: 2475–2482.PubMedGoogle Scholar
  117. Toonen, R. J. & J. R. Pawlik, 2001. Foundations of gregariousness: a dispersal polymorphism among the planktonic larvae of a marine invertebrate. Evolution 55: 2439–2454.PubMedGoogle Scholar
  118. van Iten, H., J. Moraes Leme, M. G. Simões, A. C. Marques & A. G. Collins, 2006. Reassessment of the phylogenetic position of conulariids (?Ediacaran–Triassic) within the subphylum Medusozoa (phylum Cnidaria). Journal of Systematic Palaeontology 4: 109–118.Google Scholar
  119. Veliz, D., P. Duchesne, E. Bourget & L. Bernatchez, 2006. Genetic evidence for kin aggregation in the intertidal acorn barnacle (Semibalanus balanoides). Molecular Ecology 15: 4193–4202.PubMedGoogle Scholar
  120. Watanabe, T. & H. Ishii, 2001. In situ estimation of ephyrae liberated from polyps of Aurelia aurita using settling plates in Tokyo Bay, Japan. Hydrobiologia 451 (Developments in Hydrobiology) 155: 247–258.Google Scholar
  121. Werner, B., 1973. New investigations on systematics and evolution of the class Scyphozoa and the phylum Cnidaria. Publications of the Seto Marine Biological Laboratory 20: 35–61.Google Scholar
  122. Zrzavy, J., 1997. Phylogenetics and ecology: all characters should be included in the cladistic analysis. Oikos 80: 186–192.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.School of Natural SciencesUniversity of CaliforniaMercedUSA
  2. 2.Department of Ecology and Evolutionary BiologyUniversity of CaliforniaLos AngelesUSA

Personalised recommendations