Skip to main content

Advertisement

Log in

Using simplified watershed hydrology to define spatially explicit ‘zones of influence’

  • Primary research paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Riparian areas represent dynamic spatial gradients characterized by a varying degree of terrestrial–aquatic interaction. Many studies have considered riparian zones to be discrete watershed sub-portions (e.g., 100-m riparian buffers), whereas I introduce ‘zones of influence’ that are subsets of the riparian zone. The purpose of this study is to introduce the concept of hydrologically defined influence zones using a simple hydrologic model to delimit land-cover. I describe a method for identifying zones of influence using watershed hydrologic patterns to delimit zones along a near-stream continuum between a downstream point (e.g., sample reach) and the watershed boundary. Using hydrologic modeling equations and GIS, travel time was calculated for every 30 × 30-m cell in 10 watersheds providing spatially explicit estimates of watershed hydrology and enabling us to calculate the travel time required for rainfall in any watershed cell to reach the watershed terminus. Shorter-duration travel times (i.e., 30–60 min) described smaller areas than longer-duration travel times (i.e., 210–300 min). This method is an alternative method to delimit near stream areas when quantifying watershed influence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Apan, A. A., S. R. Raine & M. S. Paterson, 2002. Mapping and analysis of changes in the riparian landscape structure of the Lockyer Valley catchment. Queensland, Australia. Landscape and Urban Planning 59: 43–57.

    Article  Google Scholar 

  • Basnyat, P., L. D. Teeter, K. M. Flynn & B. G. Lockaby, 1999. Relationships between landscape characteristics and nonpoint source pollution inputs to coastal estuaries. Environmental Management 23: 539–549.

    Article  PubMed  Google Scholar 

  • Boothroyd, I. K. G., J. M. Quinn, E. R. Langer, K. J. Costly & G. Steward, 2004. Riparian buffers mitigate effects of pine plantation logging on New Zealand streams 1. Riparian vegetation structure, stream geomorphology, and periphyton. Forest Ecology and Management 194: 199–213.

    Article  Google Scholar 

  • Burcher, C. L., H. M. Valett & E. F. Benfield, 2007. The land-cover cascade: Land-cover influences stream biota through a series of intermediate cause-effect couples. Ecology 88: 228–242.

    Article  PubMed  CAS  Google Scholar 

  • Committee of Scientists (COS), 1999. Sustaining the People’s Lands: Recommendations for Stewardship of the National Forests and Grasslands into the Next Century. U.S. Department of Agriculture, Washington, DC.

    Google Scholar 

  • Croke, J., P. Hairsine & P. Fogarty, 1999. Runoff generation and re-distribution in logged eucalyptus forests, south-eastern Australia. Journal of Hydrology 216: 56–77.

    Article  Google Scholar 

  • Decamps, H., M. Fortune, F. Gazelle & G. Pautou, 1988. Historical influence of man on the riparian dynamics of a fluvial landscape. Landscape Ecology 1: 63–73.

    Article  Google Scholar 

  • EPA (United States Environmental Protection Agency), 2000. Multi-Resolution Land Characteristics Consortium (MRLC) database. [http://www.epa.gov/mrlcpage]

  • Federal Interagency Working Group (FIWG), 1998. Stream Buffer Restoration. Principles, Processes, and Practices. National Technical Information Service, U.S. Department of Commerce, Washington, DC.

    Google Scholar 

  • Friedman, J. M., W. R. Osterkamp & W. M. Lewis, 1996. Channel narrowing and vegetation development following a Great Plains flood. Ecology 77: 2167–2181.

    Article  Google Scholar 

  • Gomi, T., R. C. Sidle & J. S. Richardson, 2002. Understanding processes and downstream linkages of headwater systems. BioScience 52: 905–916.

    Article  Google Scholar 

  • Gordon, N. D., T. A. McMahon, B. L. Finlayson, C. J. Gippel & R. J. Nathan, 2004. Stream Hydrology. An Introduction for Ecologists, 2nd ed. Wiley, West Sussex, England.

    Google Scholar 

  • Gregory, S. C., F. J. Swanson, W. A. McKee & K. W. Cummins, 1991. An ecosystem perspective of riparian zones. BioScience 42: 540–541.

    Article  Google Scholar 

  • Gupta, R. S., 1995. Hydrology and Hydraulic Systems. Waveland Press, Chicago.

    Google Scholar 

  • Harding, J. S., E. F. Benfield, P. V. Bolstad, G. S. Helfman & E. B. D. Jones III, 1998. Stream biodiversity: The ghost of land use past. Proceedings of the National Academy of Sciences 95: 14843–14847.

    Article  CAS  Google Scholar 

  • Homer, C. G., C. Huang, L. Yang & B. Wylie, 2002. Development of a Circa 2000 Landcover Database for the United States. ASPRS Proceedings, April, 2002. Washington, DC

  • Hyatt, T. L., T. Z. Waldo & T. J. Beechie, 2004. A watershed scale assessment of riparian forests, with implications for restoration. Restoration Ecology 12: 175–183.

    Article  Google Scholar 

  • Karr, J. R. & I. J. Schlosser, 1978. Water resources and the land–water interface. Science 201: 229–234.

    Article  PubMed  Google Scholar 

  • King, R. S., M. E. Baker, D. F. Whigham, D. E. Weller, T. E. Jordan, P. F. Kazyak & M. K. Hurd, 2005. Spatial considerations for linking watershed land cover to ecological indicators in streams. Ecological Applications 15: 137–153.

    Article  Google Scholar 

  • Lee, P., C. Smyth & S. Boutin, 2004. Quantitative review of riparian buffer width guidelines from Canada and the United States. Journal of Environmental Management 70: 165–180.

    Article  PubMed  CAS  Google Scholar 

  • McKergow, L. A., I. P. Prosser, R. B. Grayson & D. Heiner, 2004. Performance of grass and rainforest riparian buffers in the wet tropics, far north Queensland. 1. Riparian hydrology. Australian Journal of Soil Research 42: 473–485.

    Article  Google Scholar 

  • Melesse, A. M. & W. D. Graham, 2004. Storm runoff prediction based on a spatially distributed travel time method utilizing remote sensing and GIS. Journal of the American Water Resources Association 40: 863–879.

    Article  Google Scholar 

  • Moglen, G. E. & E. R. Beighley, 2002. Spatially explicit hydrologic modeling of land use change. Journal of the American Water Resources Association 38: 241–253.

    Article  Google Scholar 

  • Molnar, P., P. Burlando & W. Ruf, 2002. Integrated catchment assessment of riverine landscape dynamics. Aquatic Sciences 64: 129–140.

    Article  Google Scholar 

  • Montgomery, D. R., 1999. Process domains and the river continuum. Journal of the American Water Resources Association 35: 397–410.

    Article  Google Scholar 

  • Montgomery, D. R. & L. H. MacDonald, 2002. Diagnostic approach to stream channel assessment and monitoring. Journal of the American Water Resources Association 38: 1–16.

    Article  Google Scholar 

  • Moore, R. D. & J. S. Richardson, 2003. Progress towards understanding the structure, function, and ecological significance of small stream channels and their riparian zones. Canadian Journal of Forest Research 33: 1349–1351.

    Article  Google Scholar 

  • Naiman, R. J., H. Décamps & M. E. McClain, 2005. Riparia. Academic Press, San Diego.

    Google Scholar 

  • Naiman, R. J., K. L. Fetherston, S. McKay & J. Chen, 2001. Riparian forests. In Naiman, R. J. & R. E. Bilby (eds), River Ecology and Management: Lessons from the Pacific Coastal Region. Springer-Verlag, New York: 289–323.

    Google Scholar 

  • National Resources Council (NRC), 2002. Riparian Areas: Functions and Strategies for Management. National Academy Press, Washington DC.

    Google Scholar 

  • Paringit, E. C. & K. Nadaoka, 2003. Sediment yield modeling for small agricultural catchments: Land-cover parameterization based on remote sensing data analysis. Hydrologic Processes 17: 1845–1866.

    Article  Google Scholar 

  • Postel, S. L., G. C. Daily & P. R. Ehrlich, 1996. Human appropriation of renewable freshwater. Science 271: 785–788.

    Article  CAS  Google Scholar 

  • Reed, T. & S. R. Carpenter, 2002. Comparisons of P-yield, riparian buffer strips, and land cover in six agricultural watersheds. Ecosystems 5: 568–577.

    Article  CAS  Google Scholar 

  • Roth, N. E., J. D. Allan & D. L. Erickson, 1996. Landscape influences on stream biotic integrity assessed at multiple spatial scales. Landscape Ecology 11: 141–156.

    Article  Google Scholar 

  • Saunders, W., 2000. Preparation of DEM’s for use in environmental modeling analysis. In Maidment, D. R. & D. Dojic (eds), Hydrologic and Hydraulic Modeling Support with GIS. ESRI Press, Redlands, CA.

    Google Scholar 

  • Smart, R. P., C. Soulsby, M. S. Cresser, A. J. Wade, J. Townend, M. F. Billett & S. Langan, 2001. Riparian zone influence on stream water chemistry at different spatial scales: A GIS-based modeling approach, an example for the DEE, NE Scotland. The Science of the Total Environment 280: 173–193.

    Article  PubMed  CAS  Google Scholar 

  • Smock, L. A., J. E. Gladden, J. L. Riekenberg, L. A. Smith & C. R. Black, 1992. Lotic macroinvertebrate production in 3 dimensions—channel surface, hyporheic, and floodplain environments. Ecology 73: 876–886.

    Article  Google Scholar 

  • Sponseller, R. A. & E. F. Benfield, 2001. Appalachian headwater streams: Multiple-scale analysis. Journal of the North American Benthological Society 20: 44–59.

    Article  Google Scholar 

  • Stanford, J. A., 1998. Rivers in the landscape: Introduction to the special issue on riparian and groundwater ecology. Freshwater Biology 40: 402–406.

    Article  Google Scholar 

  • Steiner, F., S. Pieart, E. Cook, J. Rich & V. Coltman, 1994. State wetlands and riparian area protection programs. Environmental Management 18: 183–201.

    Article  Google Scholar 

  • Townsend, C. R., S. Doledec, R. Norris, K. Peacock & C. Arbuckle, 2003. The influence of scale and geography on relationships between stream community composition and landscape variables: Description and prediction. Freshwater Biology 48: 768–785.

    Article  Google Scholar 

  • Trimble, S. W. & P. Crosson, 2000. U.S. soil erosion rates: Myths and reality. Science 289: 248–250.

    Article  PubMed  CAS  Google Scholar 

  • United States Army Corps of Engineers (USACE), 2000. Hydrologic Modeling System HEC-HMS Users Manual, Version 2.0. Hydrologic Engineering Center, U.S. Army Corps of Engineers, Davis, CA.

    Google Scholar 

  • Van Nieuwenhuyse, E. E., 2005. Empirical model for predicting a catchment-scale metric of surface water transit time. Canadian Journal of Fisheries and Aquatic Sciences 62: 492–504.

    Article  Google Scholar 

  • Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130–137.

    Article  Google Scholar 

  • Van Sickle, J. & C. B. Johnson, 2008. Parametric distance weighting of landscape influence on streams. Landscape Ecology 23: 427–438.

    Article  Google Scholar 

  • Vidon, P. G. F. & A. R. Hill, 2004. Landscape controls on the hydrology of stream riparian zones. Journal of Hydrology 292: 210–228.

    Article  Google Scholar 

  • Walling, D. E., 1998. Erosion and sediment yield research—some recent perspectives. Journal of Hydrology 100: 113–141.

    Article  Google Scholar 

  • Wang, X. & Z. Yin, 1997. Using GIS to assess the relationship between landuse and water quality at a watershed level. Environment International 23: 103–114.

    Article  CAS  Google Scholar 

  • Ward, J. V., 1989. The 4-dimensional nature of lotic ecosystems. Journal of the North American Benthological Society 8: 2–8.

    Article  Google Scholar 

  • Wiens, J. A., 2002. Riverine landscapes: Taking landscape ecology into the water. Freshwater Biology 47: 401–415.

    Article  Google Scholar 

  • Woessner, W. W., 2000. Stream and fluvial plain ground water interactions: Rescaling hydrogeologic thought. Groundwater 38: 423–429.

    CAS  Google Scholar 

  • Yin, Z. & X. Wang, 1999. A cross-scale comparison of drainage basin characteristics derived from digital elevation models. Earth Surface Processes and Landforms 24: 557–562.

    Article  Google Scholar 

  • Zelinski, J. & L. Quackenbush., 1999. An A-priori Approach to Hyperspectral Image Acquisition and Analysis. Commercial Remote Sensing Program Office. National Aeronautics and Space Administration. John C. Stennis Space Center, MS 39529.

Download references

Acknowledgments

This research was supported by the National Science Foundation Grand DEB-9632854 to the Virginia Tech Coweeta LTER. I would like to thank P. L. Angermeier, A. Braccia, E. N. J. Brookshire, J. R. Voshell, Jr., J. R. Webster, and R. H. Wynne for comments on earlier drafts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris L. Burcher.

Additional information

Handling editor: K. Martens

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burcher, C.L. Using simplified watershed hydrology to define spatially explicit ‘zones of influence’. Hydrobiologia 618, 149–160 (2009). https://doi.org/10.1007/s10750-008-9572-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-008-9572-0

Keywords

Navigation