, 615:95 | Cite as

The Great Lakes in East Africa: biological conservation considerations for species flocks

  • Christian Sturmbauer


The three largest water bodies of East Africa, Lake Victoria, Tanganyika, and Malawi contain an estimated number of 2,000 endemic cichlid fish species, in addition, to a mostly uncounted wealth of invertebrates. While the terrestrial diversity is reasonably well protected, as economic and touristic interests coincide with biological conservation strategies, this is not the case for most African lakes and rivers. Nonetheless, it must be promoted that these aquatic ecosystems also deserve protection. Conservation strategies for aquatic biota have so far been the same as for terrestrial environments, i.e., by declaring biodiversity hotspots national parks. Such parks also contain rivers and lake shores. Here, I argue that it seems questionable that this strategy will work, given strong micro-geographic structure of the species flocks and the great degree of local endemism. I suggest a novel strategy for protecting African Lake communities that accounts for local endemism, derived from recent molecular phylogenetic and phylogeographic studies on East African cichlid fishes. While connectivity is the major problem for terrestrial and marine national parks, to ensure a large enough effective population size of the protected animals, this is not the case in most taxa of African rivers and lakes, where local endemism prevails. For example, most littoral cichlid species are subdivided into numerous distinct “color morphs” with restricted distribution, and unlike marine fishes with planktonic larvae display brood care with small offspring numbers. It is argued that the establishment of “micro-scale protected areas,” a large number of small stretches of strictly protected coast line, each only some hundreds of meters long, is likely to work best to preserve the littoral communities in African lakes. Such protected zones can sustain a reasonably effective population size of littoral species, serve as protected spawning ground or nursery area for pelagic species, and at the same time re-seed neighboring populations that are exploited continuously. As long-term stability of littoral fishing grounds is in the immediate interest of village communities, such small protected areas should be managed and controlled by the local communities themselves, and supervised by governmental institutions.


Cichlid fishes Adaptive radiation Explosive speciation Protection National parks 



This opinion article would not have been possible without the long-term support of and the good relationships to the Department of Fisheries, Ministry of Agriculture and Cooperatives, Republic of Zambia. I would like to particularly thank C. Kapasa, P. Ngalande, H. Phiri, R. Sinyinza, D. Sinyinza, and L. Makasa. Likewise, I wish to thank Prof. L. Mumba, H. G. Mudenda, and C. Katongo from the Department of Biological Sciences at the University of Zambia at Lusaka, and T. Veall from Rift Valley Tropicals Ltd. for his discussion input on conservation issues. I am also obliged to B. Egger, M. Koch, S. Koblmüller, K. Sefc, S. Weiss, and two anonymous reviewers for their insightful comments on the manuscript. Financial support was provided by the Austrian Science Foundation (Grant 17680) and the European Science Foundation (Grant I48).


  1. Albertson, R. C., J. A. Markert, P. D. Danley & T. D. Kocher, 1999. Phylogeny of a rapidly evolving clade: the cichlid fishes of Lake Malawi, East Africa. Proceedings of the National Academy of Sciences USA 96: 5107–5110.CrossRefGoogle Scholar
  2. Allender, C. J., O. Seehausen, M. E. Knight, G. F. Turner & N. Maclean, 2003. Divergent selection during speciation of Lake Malawi cichlid fishes inferred from parallel radiations in nuptial coloration. Proceedings of the National Academy of Sciences USA 100: 14074–14079.CrossRefGoogle Scholar
  3. Arnegard, M. E., J. A. Markert, P. D. Danley, J. R. Stauffer Jr., A. J. Ambali & T. D. Kocher, 1999. Population structure and colour variation of the cichlid fish Labeotropheus fuelleborni Ahl along a recently formed archipelago of rocky habitat patches in southern Lake Malawi. Proceedings of the Royal Society, Series B 266: 119–130.CrossRefGoogle Scholar
  4. Barlow, G. W., 2000. The Cichlid Fishes: Nature’s Grand Experiment in Evolution. Perseus, Cambridge, MA.Google Scholar
  5. Bobe, R. & A. K. Behrensmeyer, 2004. The expansion of grassland ecosystems in Africa in relation to mammalian evolution and the origin of the genus Homo. Palaeogeography, Palaeoclimatology, Palaeoecology 207: 399–420.CrossRefGoogle Scholar
  6. Coulter, G. W., 1991. Lake Tanganyika and Its Life. Oxford University Press, Oxford.Google Scholar
  7. Coulter, G., V. Langenberg, R. Loewe-McConnell, F. Riedel, F. Roest, J. Sarvala & O. Timoshkin, 2006. The problems confronting survival of biodiversity in ancient lakes. Verhandlungen des Internationalen Vereins für Limnologie 29: 1178–1181.Google Scholar
  8. Danley, P. D. & T. D. Kocher, 2001. Speciation in rapidly diverging systems: lessons from Lake Malawi. Molecular Ecology 10: 1075–1086.PubMedCrossRefGoogle Scholar
  9. Danley, P. D., J. A. Markert, M. E. Arnegard & T. D. Kocher, 2000. Divergence with gene flow in the rock-dwelling cichlids of Lake Malawi. Evolution 54: 1725–1737.PubMedGoogle Scholar
  10. Dias, P. C., 1996. Sources and sinks in population biology. Trends in Ecology and Evolution 11: 326–330.CrossRefGoogle Scholar
  11. Duftner, N., K. M. Sefc, S. Koblmüller, B. Nevado, E. Verheyen, H. Phiri & C. Sturmbauer, 2006. Distinct population structure in a phenotypically homogeneous rock-dwelling cichlid fish from Lake Tanganyika. Molecular Ecology 15: 2381–2396.PubMedCrossRefGoogle Scholar
  12. Duftner, N., K. M. Sefc, S. Koblmüller, W. Salzburger, M. Taborsky & C. Sturmbauer, 2008. Parallel evolution of facial stripe patterns in the Neolamprologus brichardi/pulcher species complex endemic to Lake Tanganyika. Molecular Phylogenetics and Evolution 45: 326–338.Google Scholar
  13. Franklin, I. R., 1980. Evolutionary change in small populations. In Soule, M. E. & B. A. Wilcox (eds), Conservation Biology: An Evolutionary-Ecological Perspective. Sinauer Associates, Sunderland, MA: 135–139.Google Scholar
  14. Fryer, G. & T. D. Iles, 1972. The Cichlid Fishes of the Great Lakes of Africa. T.H.F., Neptune, NJ.Google Scholar
  15. Genner, M. J., O. Seehausen, D. F. R. Cleary, M. E. Knight, E. Michel & G. F. Turner, 2004. How does the taxonomic status of allopatric populations influence species richness within African cichlid species assemblages? Journal of Biogeography 31: 93–102.Google Scholar
  16. Greenwood, P. H., 1984. African cichlid fishes and evolutionary theories. In Echelle, A. A. & I. Kornfield (eds), Evolution of Fish Species Flocks. University of Maine at Orono Press, Orono: 141–154.Google Scholar
  17. Hanski, I. & D. Simberloff, 1997. The metapopulation approach, its history, conceptual domain and application to conservation. In Hanski, I. & M. E. Gilpin (eds), Metapopulation Biology: Ecology, Genetics and Evolution. Academic Press, London: 5–26.Google Scholar
  18. Koblmüller, S., N. Duftner, C. Katongo, H. Phiri & C. Sturmbauer, 2005. Ancient divergence in bathypelagic Lake Tanganyika deepwater cichlids: mitochondrial phylogeny of the tribe Bathybatini. Journal of Molecular Evolution 60: 297–314.PubMedCrossRefGoogle Scholar
  19. Koblmüller, S., K. M. Sefc, N. Duftner, M. Warum & C. Sturmbauer, 2007. Genetic population structure as indirect measure of dispersal ability in a Lake Tanganyika cichlid. Genetica 130: 121–131.PubMedCrossRefGoogle Scholar
  20. Koblmüller, S., K. M. Sefc & C. Sturmbauer, 2008. The Lake Tanganyika cichlid species assemblage: recent advances in molecular phylogenetics. Hydrobiologia (this volume). doi: 10.1007/s10750-008-9552-4.
  21. Kocher, T. D., 2004. Adaptive evolution and explosive speciation: the cichlid fish model. Nature Reviews Genetics 5: 288–298.PubMedCrossRefGoogle Scholar
  22. Kocher, T. D., J. A. Conroy, K. R. McKaye & J. R. Stauffer, 1993. Similar morphologies of cichlid fishes in Lakes Tanganyika and Malawi are due to convergence. Molecular Phylogenetics and Evolution 4: 420–432.CrossRefGoogle Scholar
  23. Kohda, M., Y. Yanagisawa, T. Sato, K. Nakaya, Y. Rimura, K. Matsumoto & H. Ochi, 1996. Geographical color variation in cichlid fishes at the southern end of Lake Tanganyika. Environmental Biology of Fishes 45: 237–248.CrossRefGoogle Scholar
  24. Kornfield, I. & P. F. Smith, 2000. African cichlid fishes: model systems for evolutionary biology. Annual Reviews in Ecology and Systematics 31: 163–196.CrossRefGoogle Scholar
  25. Kosswig, C., 1963. Ways of speciation in cichlids. Copeia 1963: 238–244.CrossRefGoogle Scholar
  26. Markert, J. A., M. E. Arnegard, P. D. Danley & T. D. Kocher, 1999. Biogeography and population genetics of the Lake Malawi cichlid Melanochromis auratus: habitat transience, philopatry and speciation. Molecular Ecology 8: 1013–1026.CrossRefGoogle Scholar
  27. Mayr, E., 1942. Systematics and the Origin of Species. Columbia University Press, New York.Google Scholar
  28. Mayr, E., 1984. Evolution of fish species flocks: a commentary. In Echelle, A. A. & I. Kornfield (eds), Evolution of Fish Species Flocks. University of Maine at Orono Press, Orono: 3–11.Google Scholar
  29. Meyer, A., 1993. Phylogenetic relationships and evolutionary processes in East African cichlids. Trends in Ecology and Evolution 8: 279–284.CrossRefGoogle Scholar
  30. Mölsä, H., J. Sarvala, S. Badende, D. Chitamwebwa, R. Kanyaru, N. Mulimbwa & L. Mwape, 2002. Ecosystem monitoring in the development of sustainable fisheries in Lake Tanganyika. Aquatic Ecosystem Health and Management 5: 267–281.CrossRefGoogle Scholar
  31. Moritz, C., 1994. Defining “evolutionary significant units” for conservation. Trends in Ecology and Evolution 9: 373–375.CrossRefGoogle Scholar
  32. Nelson, K. & M. E. Soul, 1987. Genetical conservation of exploited fishes. In Ryman, N. & F. Utter (eds), Population Genetics and Fisheries Management. Washington Sea Grant (Publisher), Seattle: 345–368.Google Scholar
  33. Pereyra, R., M. I. Taylor, G. F. Turner & C. Rico, 2004. Variation in habitat preference and population structure among three species of the Lake Malawi cichlid genus Protomelas. Molecular Ecology 13: 2691–2697.PubMedCrossRefGoogle Scholar
  34. Rico, C. & G. F. Turner, 2002. Extreme microallopatric divergence in a cichlid species from Lake Malawi. Molecular Ecology 11: 1585–1590.PubMedCrossRefGoogle Scholar
  35. Rüber, L., A. Meyer, C. Sturmbauer & E. Verheyen, 2001. Population structure in two sympatric species of the Lake Tanganyika cichlid tribe Eretmodini: evidence for introgression. Molecular Ecology 10: 1207–1225.PubMedCrossRefGoogle Scholar
  36. Rüber, L., E. Verheyen & A. Meyer, 1999. Replicated evolution of trophic specializations in an endemic cichlid fish lineage from Lake Tanganyika. Proceedings of the National Academy of Sciences USA 96: 10230–10235.CrossRefGoogle Scholar
  37. Ryder, O. A., 1986. Species conservation and systematics: the dilemma of subspecies. Trends in Ecology and Evolution 1: 9–10.CrossRefGoogle Scholar
  38. Salzburger, W., T. Mack, E. Verheyen & A. Meyer, 2005. Out of Taganyika: genesis, explosive speciation, key-innovations and phylogeography of the haplochromine cichlid fishes. BMC Evolutionary Biology 5: 17.PubMedCrossRefGoogle Scholar
  39. Salzburger, W. & A. Meyer, 2004. The species flocks of East African cichlid fishes: recent advances in molecular phylogenetics and population genetics. Naturwissenschaften 91: 277–290.PubMedCrossRefGoogle Scholar
  40. Schupke, P., 2003. Cichlids of Lake Tanganyika. Part 1. The Species of the Genus Tropheus. A.C.S. GmbH Rodgau, Germany: 190 pp.Google Scholar
  41. Seehausen, O., 2006. African cichlid fish: a model system in adaptive radiation research. Proceedings of the Royal Society, Series B 273: 1987–1998.CrossRefGoogle Scholar
  42. Sefc, K. M., S. Baric, W. Salzburger & C. Sturmbauer, 2007. Species-specific population structure in rock-specialized sympatric cichlid species in Lake Tanganyika, East Africa. Journal of Molecular Evolution 64: 33–49.PubMedCrossRefGoogle Scholar
  43. Shaw, P. W., G. F. Turner, M. R. Idid, R. L. Robinson & G. R. Carvalho, 2000. Genetic population structure indicates sympatric speciation of Lake Malawi pelagic cichlids. Proceedings of the Royal Society, Series B 267: 2273–2280.CrossRefGoogle Scholar
  44. Soule, M. E., 1980. Thresholds for survival: maintaining fitness and evolutionary potential. In Soule, M. E. & B. A. Wilcox (eds), Conservation Biology: An Evolutionary-Ecological Perspective. Sinauer Associates, Sunderland, MA: 151–169.Google Scholar
  45. Sturmbauer, C., 1998. Explosive speciation in cichlid fishes of the African Great Lakes: a dynamic model of adaptive radiation. Journal of Fish Biology 53(Supplement A): 18–36.CrossRefGoogle Scholar
  46. Sturmbauer, C., U. Hainz, S. Baric, E. Verheyen & W. Salzburger, 2003. Evolution of the tribe Tropheini from Lake Tanganyika: synchronized explosive speciation producing multiple evolutionary parallelism. Hydrobiologia 500: 51–64.CrossRefGoogle Scholar
  47. Sturmbauer, C., S. Koblmüller, K. M. Sefc & N. Duftner, 2005. Phylogeographic history of the genus Tropheus, a lineage of rock-dwelling cichlid fishes endemic to Lake Tanganyika. Hydrobiologia 542: 335–366.CrossRefGoogle Scholar
  48. Sturmbauer, C. & A. Meyer, 1992. Genetic divergence, speciation and morphological stasis in a lineage of African cichlid fishes. Nature 358: 578–581.PubMedCrossRefGoogle Scholar
  49. Sugawara, T., Y. Terai, H. Imai, G. F. Turner, S. Koblmüller, C. Sturmbauer, Y. Shichida & N. Okada, 2005. Parallelism of amino acid changes at the RH1 affecting spectral sensitivity among deep-water cichlids from Lakes Tanganyika and Malawi. Proceedings of the National Academy of Sciences USA 102: 5448–5453.CrossRefGoogle Scholar
  50. Taylor, M. I., L. Rüber & E. Verheyen, 2001. Microsatellites reveal high levels of population substructuring in the species-poor eretmodine cichlid lineage from Lake Tanganyika. Proceedings of the Royal Society London, Series B 268: 803–808.CrossRefGoogle Scholar
  51. Turner, G. F., O. Seehausen, M. E. Knight, C. J. Allender & R. L. Robinson, 2001. How many species of cichlid fishes are there in African lakes? Molecular Ecology 10: 793–806.PubMedCrossRefGoogle Scholar
  52. Unsworth, R. K. F., A. Powell, F. Hukom & D. J. Smith, 2007. The ecology of Indo-Pacific grouper (Serranidae) species and the effects of a small-scale no take area on grouper assemblage, abundance and size frequency distribution. Marine Biology 152: 243–254.CrossRefGoogle Scholar
  53. Verheyen, E., L. Rüber, J. Snoeks & A. Meyer, 1996. Mitochondrial phylogeography of rock dwelling cichlid fishes reveals evolutionary influence of historic lake level fluctuations in Lake Tanganyika, Africa. Philosophical Transactions of the Royal Society London, Series B 351: 797–805.CrossRefGoogle Scholar
  54. Verheyen, E., W. Salzburger, J. Snoeks & A. Meyer, 2003. Origin of the superflock of cichlid fishes from Lake Victoria, East Africa. Science 300: 325–329.PubMedCrossRefGoogle Scholar
  55. Weiss, S., 2005. Keynote address: conservation genetics of freshwater organisms. Bulletin Français de la Pêche et de la Pisciculture 376: 571–583.CrossRefGoogle Scholar
  56. Woltereck, R., 1931. Beobachtungen und Versuche zum Fragenkomplex der Artbildung I. Biologisches Centralblatt 51: 231–233.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of ZoologyUniversity of GrazGrazAustria

Personalised recommendations