, Volume 613, Issue 1, pp 57–69 | Cite as

Quantitative trends of zebra mussels in Lake Balaton (Hungary) in 2003–2005 at different water levels

  • Csilla Balogh
  • Ilona B. Muskó
  • László G.-Tóth
  • Lajos Nagy


During the extremely dry period between 2000 and 2003, the water level of Lake Balaton decreased by 82 cm and 80% of the stony littoral, an important habitat for the zebra mussel (Dreissena polymorpha), became dry. A recovery period started in 2004 due to intense precipitation, which increased water levels in the lake. Seasonal and spatial variations of the relative abundance, population density, population structure and biomass of the zebra mussel and the relative abundance of the amphipod Chelicorophium curvispinum were monitored in the period of 2003–2005 at four different shoreline sections and in two different portions (on the bottom and near the surface portion of the rip-rap) of Lake Balaton. Along with these studies, a quantitative survey of mussel larvae found in the plankton and of the abundance of mussel feeding diving ducks were made. As a consequence of the water level fall, on the dried part of the stony littoral, numerous zebra mussel druses perished. Following the dry period in early 2004, the relative abundance of the mussel on the bottom stones was smaller than in 2003 and the bottom community was dominated by C. curvispinum. By the end of 2004 and during 2005, the water level returned to normal and the surfaces of the reinundated stones were conducive to the successful colonization of zebra mussels. Hence, they returned as the dominant fauna in 2005. The stones near the surface might provide a new substrate for the recruitment of zebra mussels, probably offering more suitable substrata for the settlement in 2005 than in 2003. Therefore, the new substrata available in 2005 may have encouraged better and more rapid zebra mussel colonization than before. Zebra mussels may be better competitors for new space than C. curvispinum. A minor change of water-level fluctuation in 2005 and the reduction in population size of the mussel feeding waterfowl could have contributed to the intensive spread of zebra mussel by 2005.


Zebra mussels (Dreissena polymorphaLittoral zone Drought Water-level changes Veliger Waterfowl 



We thank the two anonymous reviewers for improvements to the manuscript and we are very grateful to Prof. Dr. Anthony R. Russo (University of Hawaii) and to Dr. Hendrycks Ed A. (Canadian Museum of Nature) for the English correction. This study was financially supported by Hungarian Scientific Research Fund (OTKA No T 034813, No T042622 and No T049365), Balaton Project of Hungarian Academy of Sciences and the National Research and Development Project (BALÖKO). Zsolt Litkey, Tünde Polgárdiné Klein, Zsuzsa Zámbóné Doma and Henriette Szabó assisted with sampling and with laboratory work. The financial support and technical help are highly acknowledged.


  1. Balogh, Cs. & I. B. Muskó, 2004. A vándorkagyló (Dreissena polymorpha) populációdinamikája balatoni hínárosban. (The population dynamics of Dreissena polymorpha on submerged macrophytes in Lake Balaton). Hidrológiai Közlöny 84: 14–16. (in Hungarian).Google Scholar
  2. Balogh, Cs. & I. B. Muskó, 2006. A vándorkagyló filtrációja és alga kibocsátása laboratóriumban. (Filtration of zebra mussels and their effect on the environment in Lake Balaton (Hungary)). Hidrobiológiai Közlöny 86: 10–12. (in Hungarian).Google Scholar
  3. Bij de Vaate, A., 1991. Distribution and aspects of population dynamics of the zebra mussel, Dreissena polymorpha in the lake Isselmeer area (the Netherlands). Oecologia 86: 40–50.CrossRefGoogle Scholar
  4. Bij de Vaate, A., M. Greijdanus-Klaas & S. Henk, 1992. Densities and biomass of Zebra Mussel in the Dutch part of the lower Rhine. Limnologie Aktuell 4: 67–79.Google Scholar
  5. Bíró, P., 1974. Observations on the food of eel (Anguilla anguilla L.) in Lake Balaton. Annales Instituti Biologici (Tihany) Hungaricae Academiae Scientiarum 41: 133–151.Google Scholar
  6. Bíró, K. & P. Gulyás, 1974. Zoological investigations in the open water Potamogeton perfoliatus stands of Lake Balaton. Annales Instituti Biologici (Tihany) Hungaricae Academiae Scientiarum 41: 181–203.Google Scholar
  7. Bunt, C. M., H. J. MacIssac & W. G. Sprules, 1993. Pumping rates and projected filtering impacts of juvenile zebra mussels (Dreissena polymorpha) in Western Lake Erie. Canadian Journal of Fisheries and Aquatic Sciences 50: 1017–1022.Google Scholar
  8. Burla, H. & V. Lubini-Ferlin, 1976. Bestandsdichte und Verbreitungsmuster von Wandermuscheln im Zürichsee. Vierteljahrschrift Naturfsorschende Gesellschaft Zürich 121: 187–199.Google Scholar
  9. Cotner, J. B., W. S. Gardner, J. R. Johnson, R. H. Sada, J. F. Cavaletto & R. T. Heath, 1995. Effects of zebra mussels (Dreissena polymorpha) on bacterioplankton: evidence for both size-selective consumption and growth stimulation. Journal of Great Lakes Research 21: 517–528.Google Scholar
  10. Custer, T. W., 1996. Food habits of diving ducks the in the Great Lakes after the zebra mussel invasion. Journal of Field Ornithology 67: 86–99.Google Scholar
  11. Dermott, R., R. Bonnell, S. Carou, J. Dow & P. Jarvis, 2003. Spatial distribution and population structure of the mussels Dreissena polymorpha and Dreissena bugensis in the Bay of Quinte, Lake Ontario, 1998 and 2000. Canadian Technical Report of Fisheries and Aquatic Sciences 2479: 1–59.Google Scholar
  12. Dermott, R. & M. Munawar, 1993. Invasion of Lake Erie offshore sediments by Dreissena and its ecological implications. Canadian Journal of Fisheries and Aquatic Sciences 50: 2298–2304.CrossRefGoogle Scholar
  13. Entz, B., 1981. A Balaton parti övében és a vízfenék élővilágában az utóbbi évtizedekben bekövetkezett változások állattani és az ezzel kapcsolatos fizikai és kémiai vizsgálatok a Balatonban. (Zoological and related physical and chemical studies of the changes in the littoral zone and the benthos of Lake Balaton in the latter decades). A Balaton kutatás újabb eredményei II. VEAB Monográfia 16 sz. Veszprém: 143–188. (in Hungarian).Google Scholar
  14. Entz, G. & O. Sebestyén, 1946. Das Leben des Balaton-Sees. A Magyar Biológiai Kutatóintézet Munkái 16: 179–411.Google Scholar
  15. Felföldy, L., 1987. Biological classification of water. 4. (Improved and enlarged ed.) Vízügyi Hidrobiologia 16. VIZDOK Budapest, pp. 259. (in Hungarian)Google Scholar
  16. Fujikura, K., M. Aoki, Sh. Ichibayashi, M. Imamura, J.-I. Ishibashi, R. Iwase, K. Kato, A. Kosaka, H. Maciyama, H. Miyake, J.-I. Miyazaki, Ch. Mizota, K. Okoshi, W.-S. Okoshi, T. Okutani, T. Satoh, L. G.-Tóth, Sh. Tsuchida, M. Wakamatsu, H. Watanabe, T. Yamanaka & H. Yamamoto, 2003. Report on investigation of vent and methane seep ecosystems by the crewed submersible „Shinkai – 2000” and the ROV „Dolphin 3K” on the Hatoma and Kuroshima Knolls, the Nansei-shoto area. JAMSTEC Journal of Deep Sea Research 22: 21–30.Google Scholar
  17. Franchini, D. A., 1978. Distribuzione vertical di Dreissena polymorpha (Pallas) nel Lago di Garda. (Distribution of the zebra mussel in Lake Garda) 2. Contributio Bollettino Zoologia 45: 257–260.Google Scholar
  18. Gaidash, Y. & I. P. Lubjanov, 1978. Malacofauna of the Dneprodzerzhinsk reservoir. In Likharev, I. M. & Ya. Starobogatov (eds), Molluscs: Their Systematics, Evolution and Significance. Malacological Review 11: 90, 25–26.Google Scholar
  19. Grossinger, J., 1791. Universa Historia physica regni Hungariae ete. Pars III.Google Scholar
  20. Griffiths, R. W., 1993. Effects of zebra mussels (Dreissena polymorpha) on the benthic fauna of Lake St. Clair. In Nalepa, T. F. & D. W. Schloesser (eds), Zebra Mussels. Biology, Impacts and Control. Lewis Publishers, Boca Raton, Ann Arbor, London, Tokyo: 415–437.Google Scholar
  21. G.-Tóth, L., 2005. Effects of water level fluctuation on the littoral habitat of Lake Balaton, the largest shallow lake in Central Europe. Water level fluctuations in lacustrine systems—ecological impacts and prospects of future climate change. Abstract Book, pp. 23.Google Scholar
  22. G.-Tóth, L., I. B. Muskó, K. Szalontai & Zs. Langó, 1999. Az eutrofizáció hatása a planktonikus és bentikus gerinctelen állatvilág táplálkozására, produkciójára és anyagforgalmára a Balatonban. (The impact of eutrophication on the feeding, production and matter-energy flux of planktonic and benthic invertebrates in Lake Balaton). In Salánkiés, J. & J. Padisák (eds), A Balaton kutatásának 1998-as eredményei. MTA Veszprémi Területi Bizottsága a Miniszterelnöki Hivatal anyagi támogatásával, Veszprém: 76–80. (in Hungarian).Google Scholar
  23. Herodek, S., L. Lackó & Á. Virág, 1988. Limnology of Lake Balaton. In Misley, K. (ed.), Lake Balaton. Research and Management, Nexus, Budapest: 31–58.Google Scholar
  24. Lakatos, Gy., L. Kozák & P. Bíró, 2001. Structure of epiphyton and epilithon in the littoral of Lake Balaton. Verhandlungen Internationale Vereinigung theoretische und angewandte Limnologie 27: 3893–3897.Google Scholar
  25. Lavrentyev, P. J., W. S. Gardner, J. F. Cavaletto & J. R. Beaver, 1995. Effects of the zebra mussel (Dreissena polymorpha Pallas) on protozoa and phytoplankton from Saginaw Bay, Lake Huron. Journal of Great Lakes Research 21: 545–557.Google Scholar
  26. Leach, J. H., 1993. Impacts of the zebra mussel (Dreissena polymorpha) on water quality and fish spawning reefs in Western Lake Erie. In Nalepa, T. F. & D. W. Schloesser (eds), Zebra Mussels. Biology, Impacts, and Control. Lewis Publishers, Boca Raton, Ann Arbor, London, Tokyo: 381–397.Google Scholar
  27. Lohner, R. N., W. V. Sigler, C. M. Mayer & Cs. Balogh, 2007. A comparison of the benthic bacterial community within and surrounding Dreissena clusters in lakes. Microbial Ecology 54:469–477.PubMedCrossRefGoogle Scholar
  28. Lóczy, L., 1894. A Balaton környékének geológiai történetéről és jelenlegi geológiai jelentőségéről. (The history and the importance of the geology around Lake Balaton). Földrajzi Közlöny 22: 1–62. (in Hungarian).Google Scholar
  29. MacIsaac, H. J., C. J. Lonnee & J. H. Leach, 1995. Suppression of microzooplankton by zebra mussels: importance of mussel size. Freshwater Biology 34: 379–387.CrossRefGoogle Scholar
  30. MacIsaac, H. J., W. G. Sprules & J. H. Leach, 1991. Ingestion of small-bodied zooplankton by zebra mussels (Dreissena polymorpha): can cannibalism on larvae influence population dynamics. Canadian Journal of Fisheries and Aquatic Sciences 48: 2051–2060.Google Scholar
  31. Miller, G. & F. Wagner, 1978. Holocene carbonate evolution in Lake Balaton (Hungary) a response to climate and impact of man. Special Publications of the International Association of Sedimentologists 2: 57–81.Google Scholar
  32. Mörtl, M. & K.-O. Rothhaupt, 2003. Effect of adult Dreissena polymorpha on settling juveniles and associated macroinvertebrates. International Review of Hydrobiology 88: 561–569.CrossRefGoogle Scholar
  33. Muskó, I. B. & B. Bakó, 2005. The density and biomass of Dreissena polymorpha living on submerged macrophytes in Lake Balaton (Hungary). Archiv für Hydrobiologie 162: 229–251.CrossRefGoogle Scholar
  34. Muskó, I. B., Cs. Balogh, Sz. Görög & M. Bence, 2003. A vándorkagyló (Dreissena polymorpha) megtelepedési stratégiája a Balatonba helyezett természetes aljzatokon. (Settling of Dreissena polymorpha on natural substrata implanted into Lake Balaton). Hidrológiai Közlöny 83: 17–19. (in Hungarian).Google Scholar
  35. Muskó, I. B., Cs. Balogh, Á. P. Tóth, É. Varga & Gy. Lakatos, 2007. Seasonal changes of Malacostraca in the stony littoral zone of Lake Balaton (Hungary) during a period of drought and a subsequent regeneration period. Hydrobiologia 590: 65–74.CrossRefGoogle Scholar
  36. Muskó, I. B. & A. R. Russo, 1999. Importance of C. curvispinum G. O. Sars, 1895 (Crustacea: Amphipoda) in Lake Balaton (Hungary)—a colonization study. In Schram, F. R. & J. C. von Vaupel Klein (eds), Crustaceans and the Biodiversity Crisis. Proceedings of the Fourth International Crustacean Congress, Amsterdam, The Netherlands, Vol. I. July 20–24, 1998. Brill, Leiden, Boston, Köln: 445–456.Google Scholar
  37. Nalepa, T. F., J. A. Wojcik, D. L. Fanslow & G. A. Lang, 1995. Initial colonization of the zebra mussel Dreissena polymorpha in Saginaw Bay, Lake Huron: population recruitment, density and size structure. Journal of Great Lakes Research 19: 637–647.Google Scholar
  38. Németh, P. & L. G.-Tóth, 2004. A zooplankton strukturája és néhány fizikokémiai változó a Balaton két harántszelvényében 2002 és 2003 aszályos nyarán. (Composition of the summer zooplankton in two transactions of Lake Balaton at extremely low water level). Hidrológiai Közlöny 84: 101–103. (in Hungarian).Google Scholar
  39. Oertel, N. & J. Nosek, 2003. Bioindikáció vízi gerinctelenekkel a Dunában. 8. Mesterséges alzatok biomonitorozásra való alkalmazhatósága. (Bioindication by macroinvertebrates in the Danube. 1. The applicability of artificial substrates for biomonitoring). Hidrológiai Közlöny 83: 101–104. (in Hungarian).Google Scholar
  40. Padisák, J., 1994. Relationship between short-term and long-term responses of phytoplankton to eutrophication of the largest shallow lake in Central Europe (Balaton, Hungary). In Proceedings an International Symposium. Science and Technology Press, Beijing, China: 419–437.Google Scholar
  41. Padisák, J., 2001. Seasonal variations of the different taxonomical units and diversity of the phytoplankton in Lake Balaton. Results of the Lake Balaton studies in 2001. Hungarian Academy of Sciences, Budapest: 208–216. (in Hungarian).Google Scholar
  42. Padisák, J. & C. S. Reynolds, 1998. Selection of phytoplankton associations in Lake Balaton, Hungary, in response to eutrophication and restoration measures, with special reference to the cyanoprokaryotes. Hydrobiologia 384: 41–53.CrossRefGoogle Scholar
  43. Palomäki, R., 1994. Response by macrozoobenthos biomass to water level regulation in some Finnish lake littoral zones. Hydrobiologia 286: 17–26.CrossRefGoogle Scholar
  44. Ponyi, J., 1981. A makrobentosz mennyiségi vizsgálata a Balatonon. (Quantitative macrobenthos studies in Lake Balaton). A Balaton kutatás újabb eredményei II. VEAB Monográfia 16 sz. 1981, Veszprém: 221–237. (in Hungarian).Google Scholar
  45. Ponyi, J., 1985. A Balaton nyíltvizének és iszapjának gerinctelen állatvilága és életkörülményeik. (Macroinvertebrates in the mud and the open-water area of Lake Balaton). Doctoral Thesis, Tihany: 1–199. (in Hungarian).Google Scholar
  46. Ponyi, J., 1994. Abundance and feeding of wintering and migrating aquatic birds in two sampling areas of Lake Balaton in 1983–85. Hydrobiologia 279/280: 63–69.CrossRefGoogle Scholar
  47. Reeders, H. H. & A. B. de Vaate, 1990. Zebra mussels (Dreissena polymorpha): a new perspective for water quality management. Hydrobiologia 200/201: 437–450.CrossRefGoogle Scholar
  48. Sapkarev, J., 1975. Composition and dynamics of the bottom animals in the littoral zone of Dojran lake, Macedonia. Verhandlungen Internationale Vereinigung theoretische und angewandte Limnologie 19: 1339–1350.Google Scholar
  49. Schloesser, D. W., T. F. Nalepa & G. L. Mackie, 1996. Zebra mussel infestation of unionid bivalves (Unionidae) in North America. American Zoologist 36: 300–310.Google Scholar
  50. Sebestyén, O., 1934. A vándorkagyló (Dreissensia polymorpha Pall.) és a szövőbolharák (Corophium curvispinum G. O. Sars forma devium Wundsch) megjelenése és rohamos térfoglalása a Balatonban. (Appearance and rapid increase of Dreissensia polymorpha Pall. and Corophium curvispinum G. O. Sars forma devium Wundsch in Lake Balaton). A Magyar Biológiai Kutatóintézet Munkái 7: 190–204. (in Hungarian).Google Scholar
  51. Sebestyén, O., 1935. A Dreissena polymorpha elszaporodása a Balatonban (Dreissen a polymorpha Pall. in Lake Balaton). Állattani Közlemények 32: 123–126. (in Hungarian).Google Scholar
  52. Sebestyén, O., 1937. A Balaton régi lakóinak küzdelme a vándorkagylóval. (The struggle of certain members of the original Balaton fauna and flora against Dreissena polymorpha Pall). Állattani Közlemények 34: 157–164. (in Hungarian).Google Scholar
  53. Sebestyén, O., 1938. Colonization of two new fauna-elements of Pontus-origin (Dreissensia polymorpha Pall. and Corophium curvispinum G. O. Sars forma devium Wundsch) in Lake Balaton. Verhandlungen Internationale Vereinigung theoretische und angewandte Limnologie 8: 169–181.Google Scholar
  54. Sebestyén, O., B. Entz & L. Felföldy, 1951. A study on biological phenomena occurring at low water on the shore of Lake Balaton in 1949. Annales Instituti Biologici (Tihany) Hungaricae Academiae Scientiarum 20: 127–160.Google Scholar
  55. Shevtsova, L. V., G. A. Zhdanova, V. A. Movchan & A. B. Primak, 1986. Experimental interrelationship between Dreissena and planktonic invertebrates. Hydrobiological Journal 22: 36–39.Google Scholar
  56. Silverman, H., J. W. Lynn, E. C. Achberger & T. H. Dietz, 1996. Gill structure in zebra mussels: bacterial-sized particle filtration. American Zoologist 36: 373–384.Google Scholar
  57. Skubinna, J. P., T. G. Coon & T. R. Batterson, 1995. Increased abundance and depth of submersed macrophytes in response to decreased turbidity in Saginaw Bay, Lake Huron. Journal of Great Lakes Research 21: 476–488.CrossRefGoogle Scholar
  58. Sokal, R. R. & J. F. Rohlf, 1995. Biometry, Third Edition. W. H. Freeman and Company.Google Scholar
  59. Specziár, A., L. Tölg & P. Bíró, 1997. Feeding strategy and growth of cyprinids in the littoral zone of Lake Balaton. Journal of Fish Biology 51: 1109–1124.Google Scholar
  60. Stanczykowska, A., 1975. Ecosystem of Lake Mikolajskie, regularities of the Dreissena polymorpha Pall. (Bivalvia) occurrence and its function in the lake. Polskie Archiwum Hydrobiologii 22: 73–78.Google Scholar
  61. Stanczykowska, A., W. Lawacz, J. Mattice & K. Lewandowski, 1976. Bivalves as a factor effecting circulation of matter in Lake Mikkolajskie (Poland). Limnologica (Berlin) 10: 347–352.Google Scholar
  62. Stanczykowska, K. & K. Lewandowski, 1993. Thirty years of studies of Dreissena polymorpha ecology in Mazurian Lakes and Northeastern Poland. In Nalepa, T. F. & D. W. Schloesser (eds), Zebra mussels. Biology, Impacts, and Control. Lewis Publishers, Boca Raton, Ann Arbor, London, Tokyo: 3–37.Google Scholar
  63. Tátrai, I., K. Mátyás, J. Korponai, G. Paulovits & P. Pomogyi, 2000. The role of the Kis-Balaton Water Protection System in the control of water quality of Lake Balaton. Ecological Engineering 16: 73–78.CrossRefGoogle Scholar
  64. Van der Velde, G., B. G. P. Paffen & F. W. B. van den Brink, 1994. Decline of zebra mussel populations in the Rhine. Competition between two mass invaders (Dreissena polymorpha and Corophium curvispinum). Naturwissenschaften 81: 32–34.CrossRefGoogle Scholar
  65. Varga, Gy., 2005. A Balaton vízháztartási viszonyainak vizsgálata. (Investigation of the water balance of Lake Balaton). In Szlávik, L. (ed.), A Balaton. Lake Balaton.. Vízügyi Közlemények, Budapest: 93–104. (in Hungarian).Google Scholar
  66. Vörös, L., A. Kovács, K. Balogh & E. Koncz, 2000. Role of the microbial assemblages in the formation of the water quality of Lake Balaton. Results of the Lake Balaton studies in 1999. Hungarian Academy of Sciences, Budapest: 24–32. (in Hungarian).Google Scholar
  67. Walz, N., 1975. Die Besiedlung von künstlichlen Substraten durch Larven von Dreissena polymorpha. (Settling of zebra mussel larvae on artifical substrate). Archiv für Hydrobiologie 82: 423–431.Google Scholar
  68. Werner, S., M. Mörtl, H. Bauer & K.-O. Rothhaupt, 2005. Strong impact of wintering waterbirds on zebra mussel (Dreissena polymorpha) populations at Lake Constance, Germany. Freshwater Biology 50: 1412–1426.CrossRefGoogle Scholar
  69. Wiktor, J., 1963. Research on the ecology of Dreissena polymorpha Pall. in the Szczecin.Lagoon. Ekologie Poland A11: 275–280.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Csilla Balogh
    • 1
    • 2
  • Ilona B. Muskó
    • 2
  • László G.-Tóth
    • 2
  • Lajos Nagy
    • 3
  1. 1.Department of LimnologyUniversity of PannoniaVeszpremHungary
  2. 2.Balaton Limnological Research Institute of the Hungarian Academy of SciencesTihanyHungary
  3. 3.Balaton Uplands National Park DirectorateCsopakHungary

Personalised recommendations