Advertisement

Hydrobiologia

, Volume 611, Issue 1, pp 115–132 | Cite as

Biogeochemical modelling of Ria Formosa (South Portugal)

  • P. Duarte
  • B. Azevedo
  • M. Guerreiro
  • C. Ribeiro
  • R. Bandeira
  • A. Pereira
  • M. Falcão
  • D. Serpa
  • J. Reia
EUROPEAN LAGOONS

Abstract

Ria Formosa is a large (c.a. 100 km2) mesotidal lagoon system with large intertidal areas and several conflicting uses, such as fisheries, aquaculture, tourism and nature conservation. Its watersheds cover an area of approximately 864 km2, with a perimeter of 166 km and a maximum altitude of 522 m. There are about 100 different land use classes being divided among six major groups: (1) urban, (2) agricultural, (3) forest, (4) rangeland and pastures, (5) wetlands and (6) water bodies. The Soil and Water Assessment Tool (SWAT model) has been applied to the catchment areas in order to simulate water discharges to Ria Formosa, providing forcing to a two-dimensional vertically integrated coupled physical-biogeochemical model, implemented with EcoDynamo—an object oriented modelling software. This model includes water column and sediment processes as well as their interactions and several biological sub-models (e.g. phytoplankton dynamics and bivalve growth). The main objectives of this work are to: (i) Evaluate the relative importance of land drainage, waste water treatment (WTP) plants and water exchanges, across the lagoon inlets, for nutrient dynamics; (ii) Analyse management scenarios related to changes in lagoon bathymetry and their potential effects on system dynamics. Model’ results are being used by the Ria Formosa Natural Park authority for management purposes and may be useful to feedback future updates of the watershed management plans, within the scope of the European Union Water Framework Directive.

Keywords

Stream Flow Macroalgae Water Framework Directive Coastal Lagoon Water Residence Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported by DITTY project (Development of an information technology tool for the management of Southern European lagoons under the influence of river-basin runoff) (EESD Project EVK3-CT-2002-00084). The authors wish to thank the critics from two anonymous reviewers.

References

  1. Aníbal, J., 1998. Impacte da macroepifauna sobre as macroalgas Ulvales (Chlorophyta) na Ria Formosa. MSc Thesis, Coimbra University: 73 pp.Google Scholar
  2. Brock, T. D., 1981. Calculating solar radiation for ecological studies. Ecological Modelling 14: 1–9.CrossRefGoogle Scholar
  3. Cardoso, J. V., 1965. Os solos de Portugal, sua classificação, caracterização e génese. Secretaria de Estado da Agricultura—Direcção Geral dos Serviços Agrícolas, Lisboa.Google Scholar
  4. Chapelle, A., 1995. A preliminary model of nutrient cycling in sediments of a Mediterranean lagoon. Ecological Modelling 80: 131–147.CrossRefGoogle Scholar
  5. Chapelle, A., C. Bacher, P. Duarte, A. Fiandrino, L. Galbiati, D. Marinov, J. Martinez, A. Norro, A. Pereira, M. Plus, S. Rodriguez, G. Tsirtsis & J. M. Zaldívar, 2005a. Modelling Report. Coastal Lagoon Modelling: An Integrated Approach. Available at http://www.dittyproject.org/Reports.asp.
  6. Chapelle, A., P. Duarte, A. Fiandrino, L. Galbiati, D. Marinov, J. Martinez, A. Norro, F. Somma, G. Tsirtsis, J. M. Zaldívar, et al., 2005b. Comparison between Different Modelling Approaches. Available at http://www.dittyproject.org/Reports.asp.
  7. Duarte, P., B. Azevedo & A. Pereira, 2005. Hydrodynamic Modelling of Ria Formosa (South Coast of Portugal) with EcoDynamo. DITTY Report. Available at http://www.dittyproject.org/Reports.asp.
  8. Duarte, P., R. Meneses, A. J. S. Hawkins, M. Zhu, J. Fang & J. Grant, 2003. Mathematical modelling to assess the carrying capacity for multi-species culture within coastal water. Ecological Modelling 168: 109–143.CrossRefGoogle Scholar
  9. Dyke, P. P. G., 2001. Coastal and Shelf Sea Modelling. Topics in Environmental Fluid Dynamics. Kluwer Academic Publishers.Google Scholar
  10. European Union (EU), 2000. Directive 2000/60/EC of the European Parliament and of the Council establishing a framework for the Community action in the field of water policy. Official Journal of the European Communities, 22/12/2000.Google Scholar
  11. Falcão, M., 1997. Dinâmica de nutrientes na Ria Formosa: efeitos da interacção da laguna com as suas interfaces na reciclagem do azoto, fósforo e sílica. PhD Thesis, Universidade do Algarve: 223 pp.Google Scholar
  12. Falcão, M., L. Fonseca, D. Serpa, D. Matias, S. Joaquim, P. Duarte, A. Pereira, C. Martins & M. J. Guerreiro, 2003. Synthesis Report. Available at http://www.dittyproject.org/Reports.asp.
  13. Falcão, M. & C. Vale, 1990. Study of the Ria Formosa ecosystem: benthic nutrient remineralization and tidal variability of nutriens in the water. Hydrobiologia 207: 137–146.CrossRefGoogle Scholar
  14. Falcão, M. & C. Vale, 1995. Tidal flushing of ammonium from intertidal sediments of Ria Formosa, Portugal. Netherlands Journal of Aquatic Ecology 29(3–4): 239–244.CrossRefGoogle Scholar
  15. Falcão, M. & C. Vale, 1998. Sediment-water exchanges of ammonium and phosphate in intertidal and subtidal areas of a mesotidal coastal laggon (Ria Formosa). Hydrobiologia 373(374): 193–201.CrossRefGoogle Scholar
  16. Falcão, M. & C. Vale, 2003. Nutrient dynamics in a coastal lagoon (Ria Formosa, Portugal): the importance of lagoon-sea water exchanges on the biologic productivity. Ciencias Marinas 29(3): 425–433.Google Scholar
  17. Ferreira, J. G., 1995. EcoWin—an object-oriented ecological model for aquatic ecosystems. Ecological Modelling 79: 21–34.CrossRefGoogle Scholar
  18. Fong, P., R. M. Donohoe & J. B. Zedler, 1993. Competition with macroalgae and benthic cyanobacterial mats limits phytoplankton abundance in experimental microcosms. Marine Ecology Progress Series 100: 97–102.CrossRefGoogle Scholar
  19. Harlin, M. M., 1995. Changes in major plant groups following nutrient enrichment. In McComb, A. J. (ed.), Eutrophic Shallow Estuaries and Lagoons. CRC Press: 173–187.Google Scholar
  20. Instituto da Água (INAG), 2005. Relatório síntese sobre a caracterização das regiões hidrográficas prevista na Directiva-Quadro da água. Instituto da Água, Ministério do Ambiente, do Ordenamento do Território e do Desenvolvimento Regional.Google Scholar
  21. Instituto do Ambiente (IA) (Ministério do Ambiente e do Ordenamento do Território), 2005. Atlas do Ambiente. Available at http://www.iambiente.pt/atlas/est/index.jsp.
  22. Instituto Hidrográfico (IH), 2001. Proj. OC4102/01, Maria Formosa, Relatório Técnico Final, Rel. TF. OC 04/2001, Monitorização Ambiental. Instituto Hidrográfico, Divisão de Oceanografia.Google Scholar
  23. Knauss, J. A., 1997. Introduction to Physical Oceanography. Prentice-Hall.Google Scholar
  24. Laws, E. A. & J. W. Archie, 1981. Appropriate use of regression analysis in marine biology. Marine Biology 65: 99–118.CrossRefGoogle Scholar
  25. MAOT (Ministério do Ambiente e do Ordenamento do Território), 2000. Plano de Bacia Hidrográfica das Ribeiras do Algarve—Caracterização Geral da Bacia Hidrográfica, 1ª Fase—Análise e Diagnóstico da Situação de Referência, Vol. III.Google Scholar
  26. McGlathery, K. J., I. C. Anderson & A. C. Tyler, 2001. Magnitude and variability of benthic and pelagic metabolism in a temperate coastal lagoon. Marine Ecology Progress Series 216: 1–15.CrossRefGoogle Scholar
  27. McGlathery, K. J., D. Krause-Jensen, S. Rysgaard & P. B. Christensen, 1997. Patterns of ammonium uptake within dense mats of the filamentous macroalgae Chaetomorpha linum. Aquatic Botany 59: 99–115.CrossRefGoogle Scholar
  28. Mesplé, F., M. Trousselier, C. Casellas & P. Legendre, 1996. Evaluation of simple statistical criteria to qualify a simulation. Ecological Modelling 88: 9–18.CrossRefGoogle Scholar
  29. Militello, A. & S. A. Hughes, 2000. Circulation Patterns at Tidal Inlets with Jetties. US Army Corps of Engineers.Google Scholar
  30. Neitsch, S. L., J. P. Arnold, J. R. Kiniry, R. Srinivasan & J. R. Williams, 2002. Soil and Water Assessment Tool. User′s Manual. Grassland, Soil and Water Research Laboratory, Agricultural Research Service.Google Scholar
  31. Neves, R. J. J., 1985. Étude expérimentale et modélisation mathématique des circulations transitoire et rédiduelle dans l’estuaire du Sado. Ph.D. Thesis, Université de Liège.Google Scholar
  32. Newton, A., J. Icely, M. Falcão, A. Nobre, J. Nunes, J. Ferreira & C. Vale, 2004. Evaluation of eutrophication in Ria Formosa coastal lagoon, Portugal. Continental Shelf Research 23: 1945–1961.CrossRefGoogle Scholar
  33. Park, K., H.-S. Jung, H.-S. Kim & S.-M. Ahn, 2003. Estuarine and coastal water quality modelling: concept and a case study in Korea. In Yu, H. & N. Bermas (eds), Determining Environmental Carrying Capacity of Coastal and Marine Areas: Progress, Constraints, and Future Options. GEF/UNDP/IMO, PEMSEA: 98–114.Google Scholar
  34. Pereira, A. & P. Duarte, 2005. EcoDynamo: Ecological Dynamics Model Application. DITTY Report. Available at http://www.dittyproject.org/Reports.asp.
  35. Plus, M., A. Chapelle, A. Ménesguen, J. M. Deslous-Paoli & I. Auby, 2003. Modelling seasonal dynamics of biomasses and nitrogen contents in a seagrass meadow (Zostera noltii Hornem.): application to the Thau lagoon (French Mediterranean coast). Ecological Modelling 161: 213–238.CrossRefGoogle Scholar
  36. Plus, M., I. Jeunesseb, F. Bouraouic, J.-M. Zaldívar, A. Chapelle & P. Lazure, 2006. Modelling water discharges and nutrient inputs into a Mediterranean lagoon. Impact on the primary production. Ecological Modelling 193: 69–89.CrossRefGoogle Scholar
  37. Portela, L. I. & R. Neves, 1994. Modelling temperature distribution in the shallow Tejo estuary. In Tsakiris, G. & M. A. Santos (eds), Advances in Water Resources Technology and Management. Balkema, Rotterdam: 457–463.Google Scholar
  38. PROCESL, HIDRO4 & PROSISTEMAS, 2000. Plano de Bacia Hidrográfica das Ribeiras do Algarve—1ª Fase Análise e Diagnóstico da Situação de Referência. Vol. III—Análise; Capítulo 1—Caracterização Geral da Bacia Hidrográfica: 78 pp.Google Scholar
  39. Santos, R., M. Sprung, R. Machás, J. Aníbal, N. Dias, L. Mata, V. Vieira, F. Piedade, L. Pérez-Lloréns, I. Hernández, J. Vergara & G. Peralta, 2000. Produção bentónica e fluxos de matéria orgânica na Ria Formosa, Algarve, Portugal. Final Report of the INTERREG II Project (contract nº 12/REG/6196).Google Scholar
  40. Serpa, D., 2004. Macroalgal (Enteromorpha spp. and Ulva spp.) Primary Productivity in the Ria Formosa Lagoon. MSc Thesis, Universidade Nova de Liaboa.Google Scholar
  41. Service Hydrographique et Océanographique de la Marine (SHOM), 1984. Table des marées des grands ports du Monde. Service Hydrographique et Océanographique de la Marine.Google Scholar
  42. Sfriso, A., B. Pavoni, A. Marcomini & A. A. Orio, 1992. Macroalgae, nutrient cycles, and pollutants in the Lagoon of Venice. Estuaries 15: 517–528.CrossRefGoogle Scholar
  43. Sokal, R. R. & F. J. Rohlf, 1995. Biometry. The Principles and Practice of Statistics in Biological Research. W·H. Freeman and Company.Google Scholar
  44. Thybo-Christesen, M. & T. H. Blackburn, 1993. Internal N-cycling, measured by 15NH4 + dilution, in Cladophora sericea in a shallow Danish bay. Marine Ecology Progress Series 100: 283–286.CrossRefGoogle Scholar
  45. Vale, C., J. Hussenot, M. Falcão & J. Martin, 1992. Dawn-dusk chemical variations near the sediment-water interface of a clam-growth bank of Ria Formosa. Boletim INIP, 71–71 h.Google Scholar
  46. Valiela, I., 1995. Marine Ecological Processes. Springer: 686 pp.Google Scholar
  47. Valiela, I., K. Foreman, M. LaMontagne, D. Hersh, J. Costa, P. Peckol, B. DeMeo-Andreson, C. D’Avanzo, M. Babione, C. H. Sham, J. Brawley & K. Lajtha, 1992. Couplings of watersheds and coastal waters: sources and consequences of nutrient enrichment in Waquoit Bay, Massachusetts. Estuaries 15: 443–457.CrossRefGoogle Scholar
  48. Valiela, I., J. McClelland, J. Hauxwell, P. J. Behr, D. Hersh & K. Foreman, 1997. Macroalgal blooms in shallow estuaries: controls and ecophysiological and ecosystem consequences. Limnology & Oceanography 42: 1105–1118.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • P. Duarte
    • 1
  • B. Azevedo
    • 1
  • M. Guerreiro
    • 1
  • C. Ribeiro
    • 1
  • R. Bandeira
    • 1
  • A. Pereira
    • 1
  • M. Falcão
    • 2
  • D. Serpa
    • 2
  • J. Reia
    • 3
  1. 1.CIAGEB, Faculty of Science and TechnologyFernando Pessoa UniversityPortoPortugal
  2. 2.Portuguese Marine Research Institute (IPIMAR)OlhãoPortugal
  3. 3.Parque Natural da Ria Formosa, Centro de Educação Ambiental do MarimOlhãoPortugal

Personalised recommendations