, Volume 610, Issue 1, pp 175–192 | Cite as

Geothermal diatoms: a comparative study of floras in hot spring systems of Iceland, New Zealand, and Kenya

  • R. Bernhart Owen
  • Robin W. Renaut
  • Brian Jones
Primary research paper


Diatom floras were examined from geothermal environments in three contrasting tectonic settings. These included subduction-related acid and alkaline springs in New Zealand; alkaline springs along a divergent plate boundary on Iceland; and alkaline springs in the Kenya Rift. These shallow (<1 cm) aquatic environments vary considerably (e.g., temperature: 21.3–99°C; pH: 2.1–9.65; 56.41–643 mg l−1 SiO2). Diatoms form an important component of geothermal floras at temperatures of <45°C. The floras from New Zealand are distinguished by the common occurrence of Pinnularia. Icelandic springs have a variety of Fragilariaceae. Navicula and Anomoeoneis are most common in the Kenyan springs. Statistical analyses suggest that the diatoms cluster into seven major groups. The most common taxa include: Achnanthidium exiguum v. heterovalvum (Kras.) Czarn., Anomoeoneis sphaerophora (Ehrenb.) Pfitz, Brachysira brebissonii f. thermalis Grun., Caloneis bacillum (Grun.) Cl., Craticula cuspidata (Kütz.) Mann, Diadesmis confervacea Kütz., Epithemia argus (Ehrenb.) Kütz., Frustulia rhomboides (Ehrenb.) DeT., Hantzschia amphioxys (Ehrenb.) Grun., Navicula tenelloides Hust., Nitzschia amphibia Grun., Nitzschia inconspicua Grun., Nitzschia invisitata Hust., Nitzschia frustulum (Kütz.) Grun., Nitzschia sigma (Kütz.) W, Smith., Pinnularia chapmaniana Fog., Pinnularia appendiculata (Ag.) Cl., Pinnularia molaris (Grun.) Cl., Pinnularia acoricola Hust., Rhopalodia gibberula (Ehrenb.) O. Müll., Staurosira construens v. venter (Ehrenb.) Ham., Staurosira elliptica (Schum.) Will. & Round, and Staurosirella pinnata (Ehrenb.) Will. & Round. Canonical correspondence analysis shows clear correlations between species, alkalinity, pH, and conductivity, with less strong correlations for silica and temperature. Other factors include substrate type, current velocity, and light conditions. The preservation potential of host deposits varies considerably, being lowest for springs on clastic deltas and highest where travertine or sinter is accumulating.


Diatoms Variability Hot springs Thermal streams Swamps Phycogeography 



Research was conducted with the permission of the Office of the President and the Ministry of Science and Technology, Republic of Kenya. Iceland samples were collected under permits issued by the Environment and Food Agency. Samples from New Zealand were collected under a permit issued by the Department of Conservation. Research was supported by: Hong Kong Baptist University Grant FRG/00-01/I-44 (R. B. Owen); the Hong Kong Research Grants Council (201306 to Owen); and the Natural Sciences and Engineering Research Council of Canada (grants 629-03 to Renaut and A6090 to Jones). We also thank William Kimosop, Chief Game Warden for the northern Kenya Rift, and Helgi Torfason of the Icelandic Institute of Natural History for their support during fieldwork.


  1. Aldenderfer, M. S. & R. K. Blashfield, 1985. Cluster Analysis. Sage University paper 44, Sage Publications Inc.: 88 pp.Google Scholar
  2. Arnórsson, S., 1985. The use of mixing models and chemical geothermometers for estimating underground temperatures in geothermal systems. Journal Volcanology and Geothermal Research 23: 299–335.CrossRefGoogle Scholar
  3. Ashton, P. J. & F. R. Schoeman, 1984. A preliminary limnological investigation of twelve southern African geothermal waters. Journal Limnological Society of South Africa 10: 50–56.Google Scholar
  4. Atazadeh, I., M. Sharifi & M. G. Kelley, 2007. Evaluation of the Trophic Diatom Index for assessing water quality in River Gharasou, western Iran. Hydrobiologia 589: 165–173.CrossRefGoogle Scholar
  5. Biebl, R. & E. Kusel-Fetzmann, 1966. Beobachtungen über das Vorkommen von Algen an Thermalstandorten auf Island. Plant Systematics and Evolution 113: 408–423.CrossRefGoogle Scholar
  6. Brock, T. D., 1994. Life at High Temperatures: Yellowstone Association for Natural Science. History and Education, Inc., Wyoming: 31 pp.Google Scholar
  7. Cassie, V., 1989. A contribution to the Study of New Zealand Diatoms. Bibliotheca Diatomologica 17. Koeltz Scientific Books: 266 pp.Google Scholar
  8. Cassie, V. & R. C. Cooper, 1989. Algae of New Zealand thermal areas. Bibliotheca Phycologica 78. Cramer, Berlin: 261 pp.Google Scholar
  9. Chalié, F. & F. Gasse, 2002. Late Glacial–Holocene diatom record of water chemistry and lake level change from the tropical East African Rift Lake Abiyata (Ethiopia). Palaeogeography, Palaeoclimatology, Palaeoecology 187: 259–283.CrossRefGoogle Scholar
  10. Cocquyt, C., 1999. Diatoms from a hot spring in Lake Tanganyika. Nova Hedwigia 68: 425–439.Google Scholar
  11. Coesel, P. F. M., 1996. Biogeography of desmids. Hydrobiologia 336: 41–53.Google Scholar
  12. Deocampo, D. M. & G. M. Ashley, 1999. Siliceous islands in a carbonate sea: modern and Pleistocene spring-fed wetlands in Ngorongoro Crater and Oldupai Gorge, Tanzania. Journal of Sedimentary Research 69: 974–979.Google Scholar
  13. Etter, W., 1999. Community analysis. In Harper, D. A. T. (ed.), Numerical Palaeobiology. Computer-based Modelling and Analysis of Fossils and Their Distributions. John Wiley and Sons: 478 ppGoogle Scholar
  14. Foged, N., 1974. Freshwater Diatoms in Iceland. Bibliotheca Phycologica 15. J. Cramer: 118 pp.Google Scholar
  15. Foged, N., 1979. Diatoms in New Zealand, the North Island. Bibliotheca Phycologica 47. J. Cramer: 129 pp.Google Scholar
  16. Gasse, F., 1980. Les Diatomeés lacustres Pio-Pléistocènees du Gadeb (Éthiopie): Systématique, Paléoécologie, Biostratigraphie. Revue Algologique, Memoire hors-serie no. 3: 249 ppGoogle Scholar
  17. Gasse, F., 1986. East African Diatoms. Taxonomy, Ecological Distribution. Bibliotheca Diatomologica 11. J. Cramer, Stuttgart: 202 pp.Google Scholar
  18. Haworth, E. Y. & P. A. Tyler, 1993. Morphology and taxonomy of Cyclotella tasmanica spec. nov., a newly described diatom from Tasmanian lakes. Hydrobiologia 269/270: 49–56.CrossRefGoogle Scholar
  19. Heinsalu, A., T. Alliksar, A. Leeben & T. Nõges, 2007. Sediment diatom assemblages and composition of pore-water dissolved organic matter reflect recent eutrophication history of Lake Peipsi Estonia/Russia). Hydrobiologia 584: 133–143.CrossRefGoogle Scholar
  20. Heinsalu, A., H. Luup, T. Alliksar, P. Nõges & T. Nõges, 2008. Water level changes in a large shallow lake as reflected by the plankton: periphyton-ratio of sedimentary diatoms. Hydrobiologia 599: 23–30.CrossRefGoogle Scholar
  21. Hoffman, L., 1996. Geographic distribution of blue-green algae. Hydrobiologia 336: 33–40.Google Scholar
  22. Jana, B. B., 1978. The plankton ecology of some thermal springs in West Bengal, India. Hydrobiologia 61: 135–143.CrossRefGoogle Scholar
  23. Jones, B. & R. W. Renaut, 2006. Growth of siliceous spicules in acidic hot springs, Waiotapu Geothermal Area, North Island, New Zealand. Palaios 21: 406–423.CrossRefGoogle Scholar
  24. Jones, B. & R. W. Renaut, 2007. Microstructural changes accompanying the opal-A to opal-CT transition: new evidence from the siliceous sinters of Geysir, Haukadalur, Iceland. Sedimentology 54: 921–948.CrossRefGoogle Scholar
  25. Jones, B., R. W. Renaut & M. R. Rosen, 1997. Biogenicity of silica precipitation around geysers and hot spring vents, North Island, New Zealand. Journal Sedimentary Research 67: 88–104.Google Scholar
  26. Jones, B., R. W. Renaut & M. R. Rosen, 2000. Stromatolites forming in acidic hot-spring waters, North Island, New Zealand. Palaios 15: 450–475.Google Scholar
  27. Jones, B., R. W. Renaut & M. R. Rosen, 2001. Microbial construction of siliceous stalactites at geysers and hot springs: examples from the Whakarewarewa Geothermal Area, North Island, New Zealand. Palaios 16: 73–94.Google Scholar
  28. Jones, B., R. W. Renaut & M. R. Rosen, 2003. Silicified microbes in a geyser mound: the enigma of low-temperature cyanobacteria in a high-temperature setting. Palaios 18: 87–109.CrossRefGoogle Scholar
  29. Karst-Riddoch, T. L., 2004. Sedimentary diatoms from sensitive alpine (northwest Canada) and subarctic (Iceland) lakes as indicators of environmental and climatic conditions. Ph.D. thesis, Queen’s University, Kingston, Ontario: 194 pp.Google Scholar
  30. Krasske, G., 1938. Beiträge zur Kenntnis der Diatomeenflora von Island und Spitzbergen. Archiv für Hydrobiologie und Planktonkunde 33: 503–533.Google Scholar
  31. Kristiansen, J. & M. S. Vigna, 1996. Bipolarity in the distribution of silica-scaled chysophytes. Hydrobiologia 336: 121–136.Google Scholar
  32. Legesse, D., F. Gasse, O. Radakovitch, C. Vallet-Coulomb, R. Bonnefille, D. Versschuren, E. Gibert & P. Barker, 2002. Environmental changes in a tropical lake (Lake Abiyata, Ethiopia) during recent centuries. Palaeogeography, Palaeoclimatology, Palaeoecolofy 187: 233–258.CrossRefGoogle Scholar
  33. Liutkus, C. M. & G. M. Ashley, 2003. Facies model of a semi-arid freshwater wetland, Olduvai Gorge, Tanzania. Journal of Sedimentary Research 73: 691–705.CrossRefGoogle Scholar
  34. Lowe, R. L., S. W. Golladay & J. R. Webster, 1986. Periphyton response to nutrient manipulation in streams draining clearcut and forested watersheds. Journal of the North American Benthological Society 5: 221–229.CrossRefGoogle Scholar
  35. Mpawenayo, B. & J. M. Mathooko, 2004. Diatom assemblages in the hot springs associated with Lakes Elmenteita and Baringo in Kenya. African Journal of Ecology 42: 363–367.CrossRefGoogle Scholar
  36. Nicholson, K., 1993. Geothermal Fluids: Chemistry and Exploration Techniques. Springer, Berlin: 255 pp.Google Scholar
  37. Owen, R. B., 2002. Sedimentological characteristics and origins of diatomaceous deposits in the East African Rift System. In Renaut, R.W. & G. Ashley (eds), East African Sedimentation, Vol. 73. SEPM Special Publication: 233–246.Google Scholar
  38. Owen, R. B., R. W. Renaut, V. C. Hover, G. M. Ashley & A. M. Muasya, 2004. Swamps, springs and diatoms: wetlands of the semi-arid Bogoria-Baringo Rift, Kenya. Hydrobiologia 518: 59–78.CrossRefGoogle Scholar
  39. Østrup, E., 1916. Marine diatoms from the coasts of Iceland. Botany of Iceland 1: 347–394.Google Scholar
  40. Østrup, E., 1918. Freshwater diatoms from Iceland. Botany of Iceland 2: 1–96.Google Scholar
  41. Padisák, J., 2003. Phytoplankton. In O’Sullivan, P.E. & C.·S. Reynolds (eds), The Lakes Handbook, Vol. 1. Limnology and Limnetic Ecology. Blackwell: 251–308.Google Scholar
  42. Patrick, R., C. Bowman & J. Coles, 1969. Temperature and manganese as determining factors in the presence of diatom or blue-green algal floras in streams. Proceedings of the National Academy of Sciences, USA 64: 472–478.CrossRefGoogle Scholar
  43. Patrick, R. & C. W. Reimer, 1975. The Diatoms of the United States. Monographs of the Academy of Natural Sciences of Philadelphia 13: 213 pp.Google Scholar
  44. Petersen, J. B., 1928. The aerial algae of Iceland. Botany of Iceland 2: 325–447.Google Scholar
  45. Petersen, J. B., 1946. Algae collected by Eric Hultén on the Swedish Kamtchatka expedition 1920–22, especially from hot springs. Kongelige Danske Videnskabernes Selskab, Denmark 20(1): 122 pp.Google Scholar
  46. Renaut, R. W., B. Jones & M. R. Rosen, 1996. Primary silica oncoids from Orakeikorako hot springs, North Island, New Zealand. Palaios 11: 446–458.CrossRefGoogle Scholar
  47. Renaut, R. W., B. Jones, J.-J. Tiercelin & C. Tarits, 2002. Sublacustrine precipitation of hydrothermal silica in rift lakes: evidence from Lake Baringo, central Kenya Rift Valley. Sedimentary Geology 148: 235–257.CrossRefGoogle Scholar
  48. Renaut, R. W. & R. B. Owen, 2005. The geysers of Lake Bogoria, Kenya Rift Valley, Africa. GOSA Transactions 9: 4–18.Google Scholar
  49. Renaut, R. W. & J. J. Tiercelin, 1994. Lake Bogoria, Kenya Rift Valley—a sedimentological overview. In Renaut, R. W. & W. M. Last (eds), Sedimentology and Geochemistry of Modern and Ancient Saline Lakes, Vol. 50. SEPM Special Publication: 101–123.Google Scholar
  50. Round, F. E., 1981. The Ecology of Algae. Cambridge University Press, Cambridge: 653 pp.Google Scholar
  51. Roure, C. A., G. M. Ashley, C. B. de Wet, R. Dvosetsky, L. Park, V. C. Hover, R. B. Owen & S. McBrearty. Tufa as a record of perennial freshwater in a semi-arid rift basin, Kapthurin Formation, Kenya. Sedimentology (in press).Google Scholar
  52. Sabater, S. & J. R. Roca, 1990. Some factors affecting distribution of diatom assemblages in Pyrenean springs. Freshwater Biology 24: 493–507.CrossRefGoogle Scholar
  53. Sabater, S. & J. R. Roca, 1992. Ecological and biogeographical aspects of diatom distribution in Pyrenean springs. British Phycological Journal 27: 203–213.CrossRefGoogle Scholar
  54. Scheffler, W. & J. Padisák, 1997. Cyclotella tripartite Håkansson (Bacillariophyceae), a dominant diatom species in the oligotrophic Stechlinsee (Germany). Nova Hedwigia 65: 221–232.Google Scholar
  55. Schwabe, G. H., 1933. Beobachtungen über thermische Schichtungen in Thermalgewässern auf Island. Archiv für Hydrobiologie 26: 187–196.Google Scholar
  56. Schwabe, G. H., 1936. Beiträge zur Kenntnis islandischer Thermalbiotope. Archiv für Hydrobiologie, Supplementband 6: 161–352.Google Scholar
  57. Sigvaldeson, G. E., 1964. Some geochemical and hydrothermal aspects of the 1961 Askja eruption. Beiträge sur Mineralogie und Petrographic 10: 263–274.CrossRefGoogle Scholar
  58. Smol, J. P., 1988. Paleoclimate proxy from freshwater arctic diatoms. Verhandlugen Internationale Vereinigung für Limnologie 23: 837–844.Google Scholar
  59. Sokal, R. R. & F. J. Rohlf, 1970. The intelligent ignoramus, an experiment in numerical taxonomy. Taxon 19: 305–319.CrossRefGoogle Scholar
  60. Sperling, J. A., 1975. Algal ecology of southern Icelandic hot springs in winter. Ecology 56: 183–190.CrossRefGoogle Scholar
  61. Stenger-Kovács, C., K. Buczkó, E. Hajnal & J. Padisák, 2007. Epiphytic, littoral diatoms as indicators of shallow lake trophic status: Trophic Diatom Index for Lakes (TDIL) developed in Hungary. Hydrobiologia 589: 141–154.CrossRefGoogle Scholar
  62. Stockner, J. G., 1967. Observations of thermophilic algal communities in Mount Rainier and Yellowstone National Parks. Limnology and Oceanography 12: 13–17.CrossRefGoogle Scholar
  63. ter Braak, C. J. F., 1986. Canonical correspondence analysis: a new eigenvector method for multivariate direct gradient analysis. Ecology 67: 1167–1179.CrossRefGoogle Scholar
  64. Tyler, P. A., 1996. Endemism in freshwater algae., with special reference to the Australian region. Hydrobiologia 336: 127–135.Google Scholar
  65. Weed, W. H., 1889. The diatom marshes and diatom beds of the Yellowstone National Park. Botanical Gazette 14: 117–120.CrossRefGoogle Scholar
  66. van der Werff, A., 1941. Scientific results of Prof. Oye’s Expedition in Iceland. XI. Bacillariales. - Biologie Jaarboek. Antwerpen 8: 77–133.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • R. Bernhart Owen
    • 1
  • Robin W. Renaut
    • 2
  • Brian Jones
    • 3
  1. 1.Department of GeographyHong Kong Baptist UniversityKowloon TongHong Kong
  2. 2.Department of Geological SciencesUniversity of SaskatchewanSaskatoonCanada
  3. 3.Department of Earth and Atmospheric SciencesUniversity of AlbertaEdmontonCanada

Personalised recommendations