Advertisement

Hydrobiologia

, Volume 607, Issue 1, pp 151–161 | Cite as

Benthic algal response to hyporheic-surface water exchange in an alluvial river

  • Kevin H. Wyatt
  • F. Richard Hauer
  • George F. Pessoney
Primary research paper

Abstract

We studied the response of benthic algae to points of hyporheic-surface water exchange in the main channel of the Middle Fork Flathead River within the Nyack Flood Plain, Montana. We examined hyporheic exchange at 120 sites using piezometers and measuring vertical hydraulic gradient (VHG), hydraulic conductivity, and vertical discharge. We removed benthic algae from a single cobble at each site, and we used VHG to group sampling sites for statistical analysis. Algal cell density and chlorophyll a concentration were significantly higher at sites with hyporheic discharge (+VHG, upwelling) compared to both sites with hyporheic recharge (−VHG, downwelling) and sites with no hyporheic-surface water exchange (=VHG, neutral) (ANOVA, P < 0.05). The assemblages of algae at upwelling sites were also significantly different from downwelling and neutral exchange sites (ANOSIM, P < 0.05). Filamentous green algae Stigeoclonium sp. and Zygnema sp. and a chrysophyte, Hydrurus foetidus (Villars) Trevisan were abundant at upwelling sites, whereas an assemblage of diatoms Achnanthidium minutissimum (Kützing) Czarnecki, Cymbella excisa Kützing, Diatoma moniliformis Kützing, and Gomphonema olivaceoides Hustedt, were the most abundant taxa at downwelling and neutral exchange sites, occurring attached to, or in close association with the stalks of Didymosphenia geminata (Lyngbye) Schmidt. These data show that benthic algal communities are structured differently depending on the direction of hyporheic flux in the main channel of a large alluvial river, suggesting that hyporheic-surface exchange may influence the spatial distribution of main-channel benthic algae in rivers with hyporheic-surface water connectivity.

Keywords

Algae Benthic Hyporheic-surface water exchange Vertical hydraulic gradient Piezometers Alluvial river 

Notes

Acknowledgements

We thank faculty and staff at the Flathead Lake Biological Station especially Jim Craft, Scott Relyea, and Kristin Olson for laboratory assistance, and Diane Whited for overlaying sampling sites onto satellite images of the Middle Fork within the Nyack Flood Plain. We also thank the Dalimata family for access to the Nyack research site and Loren Bahls for advice on Montana algae. Financial assistance was provided by the Matthew Levitan Scholarship and the Harry H. Faucett Jr. Scholarship awarded to K. Wyatt.

References

  1. American Public Heath Association, 1998. Standard Methods for the Examination of Water and Wastewater 20th ed. Water Environment Federation. Arlington, VA, USA: 1183 pp.Google Scholar
  2. Amoros, C. & A. L. Roux, 1988. Interactions between water bodies within the floodplains of large rivers: Function and development of connectivity. In Schreiver, K. F. (ed.), Connectivity in Landscape Ecology, Proceedings of the 2nd International Seminar of the International Association for Landscape Ecology. Munstersche Geographische, Munster: 125–130.Google Scholar
  3. Bahls, L. L., 2004. Northwest Diatoms: A Photographic Catalogue of Species in the Montana Diatom Collection, with Ecological Optima, Associates, and Distribution Records for the Nine Northwestern United States, Vol. 1. Hannaea, Helena, MT, USA: 488 pp.Google Scholar
  4. Bansak, T. S., 1998. The Influence of Vertical Hydraulic Exchange on Habitat Heterogeneity and Surficial Primary Production on a Large Alluvial Flood Plain of the Middle Fork Flathead River. University of Montana Missoula, MT, USA: 67 pp.Google Scholar
  5. Baxter, C. V. & F. R. Hauer, 2000. Geomorphology, hyporheic exchange and selection of spawning habitat by bull trout (Salvelinus confluentus). Canadian Journal of Fisheries and Aquatic Sciences 57: 1470–1481.CrossRefGoogle Scholar
  6. Baxter, C. V., F. R. Hauer & W. W. Woessner, 2003. New techniques for installing piezometers, estimating hydraulic conductivity and detecting patterns in groundwater-stream water exchange. Transactions of the American Fisheries Society 132: 493–502.CrossRefGoogle Scholar
  7. Biggs, B. J. F., 1996. Patterns in benthic algae of streams. In Stevenson, R. J., M. L. Bothwell & R. L. Lowe (eds), Algal Ecology: Freshwater Benthic Ecosystems. Academic Press, New York, USA: 31–51.Google Scholar
  8. Bold, H. C. & M. J. Wynne, 1985. Introduction to the Algae: Structure and Reproduction. Prentice-Hall, Inc, Englewood Cliffs, New Jersey, USA: 848 pp.Google Scholar
  9. Boulton, A. J., 1993. Stream ecology and surface-hyporheic hydrologic exchange: Implications, techniques and limitations. Australian Journal of Marine and Freshwater Research 44: 553–564.CrossRefGoogle Scholar
  10. Boulton, A. J., S. Findlay, P. Marmonier, E. H. Stanley & H. M. Valett, 1998. The functional significance of the hyporheic zone in streams and rivers. Annual Review of Ecology and Systematics 29: 59–81.CrossRefGoogle Scholar
  11. Brunke, M. & T. Gonser, 1997. The ecological significance of exchange processes between rivers and groundwater. Freshwater Biology 37: 1–33.CrossRefGoogle Scholar
  12. Case, G. L., 1995. Distribution and Abundance of Zoobenthos in Channel, Springbrook and Hyporheic Habitats of an Alluvial Flood Plain. University of Montana Missoula, MT: 40 pp.Google Scholar
  13. Cavallo, B. J., 1997. Floodplain Habitat Heterogeneity and the Distribution, Abundance and Behavior of Fishes and Amphibians in the Middle Fork Flathead River Basin, Montana. University of Montana Missoula, MT: 128 pp.Google Scholar
  14. Clark, K. R., 1993. Non-parametric multivariate analysis of changes in community structure. Australian Journal of Ecology 18: 117–143.CrossRefGoogle Scholar
  15. Coleman, R. L. & C. N. Dahm, 1990. Stream geomorphology: Effects of periphyton standing crop and primary production. Journal of the North American Benthological Society 9: 293–302.CrossRefGoogle Scholar
  16. Dahm, C. N., N. B. Grimm, P. Marmonier, H. M. Valett & P. Vervier, 1998. Nutrient dynamics at interface between surface water and groundwaters. Freshwater Biology 40: 427–452.CrossRefGoogle Scholar
  17. Dahm, C. N., H. M. Valett, C. V. Baxter & W. W. Woessner, 2006. Hyporheic zones. In Hauer, F. R. & G. A. Lamberti (eds), Methods in Stream Ecology, 2nd ed. Academic Press, San Diego, USA: 119–142.Google Scholar
  18. Ellis, B. K., J. A. Stanford & J. V. Ward, 1998. Microbial assemblages and production in alluvial aquifers of the Flathead River, Montana, USA. Journal of the North American Benthological Society 17: 382–402.CrossRefGoogle Scholar
  19. Fetter, C. W., 1994. Applied Hydrogeology, 3rd ed. Macmillan, New York, USA: 691 pp.Google Scholar
  20. Ford, T. E. & R. J. Naiman, 1989. Groundwater-surface water relationships in boreal forests watersheds: Dissolved organic carbon and inorganic nutrient dynamics. Canadian Journal of Fisheries and Aquatic Sciences 46: 41–49.CrossRefGoogle Scholar
  21. Freeman, M. C., 1986. The role of nitrogen and phosphorus in the development of Cladaphora glomerata in the Manawatu River, New Zealand. Hydrobiologia 131: 23–30.CrossRefGoogle Scholar
  22. Freeze, R. A. & J. A. Cherry, 1979. Groundwater. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, USA: 604 pp.Google Scholar
  23. Frissell, C. A., W. J. Liss, C. E. Warren & M. D. Hurley, 1986. A hierarchical framework for stream habitat classification: Viewing streams in a watershed context. Environmental Management 10: 199–214.CrossRefGoogle Scholar
  24. Gilbert, J. M., J. Dole-Olivier, P. Marmonier & P. Vervier, 1990. Surface water-groundwater ecotones. In Naiman, R. J. & H. Decamps (eds), Ecology and Management of Aquatic-Terrestrial Ecotones. Parthenon Publishers, London, UK: 199–255.Google Scholar
  25. Graham, L. E. & L. W. Wilcox, 2000. Algae. Prentice Hall, Upper Saddle River, New Jersey, USA: 640 pp.Google Scholar
  26. Henry, J. C. & S. G. Fisher, 2003. Spatial segregation of periphyton communities in a desert stream: Causes and consequences of N cycling. Journal of the North American Benthological Society 22: 511–527.CrossRefGoogle Scholar
  27. Hvorslev, M. J., 1951. Time lag and soil permeability in groundwater observations. Bulletin No. 36, Waterways Experiment Station, Corps of Engineers, Vicksburg, MS, USA: 50 pp.Google Scholar
  28. Kingston, J. C., 2003. Araphid and monoraphid diatoms. In Wehr, J. D. & R. G. Sheath (eds), Freshwater Algae of North America: Ecology and Classification. Academic Press, New York, USA: 595–636.CrossRefGoogle Scholar
  29. Kociolek, J. P. & S. A. Spaulding, 2003. Eunotioid and asymmetrical naviculoid diatoms. In Wehr, J. D. & R. G. Sheath (eds), Freshwater Algae of North America: Ecology and Classification. Academic Press, New York, USA: 655–684.CrossRefGoogle Scholar
  30. Krammer, K. & H. Lange-Bertalot, 1986. Bacillariophyceae, teil 1. Naviculaceae. Spektrum Akademischer Verlag, Heidelberg, Germany: 876 pp.Google Scholar
  31. Krammer, K. & H. Lange-Bertalot, 1988. Bacillariophyceae, teil 2. Epithemiaceae, Bacillariophyceae, Surirellaceae. Spektrum Akademischer Verlag, Heidelberg, Germany: 612 pp.Google Scholar
  32. Krammer, K. & H. Lange-Bertalot, 1991a. Bacillariophyceae, teil 3. Centrales, Fragilariaceae, Eunotiaceae, Achnanthaceae. Spektrum Akademischer Verlag, Heidelberg, Germany: 576 pp.Google Scholar
  33. Krammer, K. & H. Lange-Bertalot, 1991b. Bacillariophyceae, teil 4. Achnanthaceae, kritische erganzungen zu Navicula (lineolate) und Gomphonema. Spektrum Akademischer Verlag, Heidelberg, Germany: 437 pp.Google Scholar
  34. Lowe, R. L. & G. D. Laliberte, 2006. Benthic stream algae: Distribution and structure. In Hauer F. R. & G. A. Lamberti (eds), Methods in Stream Ecology, 2nd ed. Academic Press, San Diego, USA: 327–356.Google Scholar
  35. Lowe, R. L. & Y. Pan, 1996. Benthic algal communities as biological monitors. In Stevenson, R. J., M. L. Bothwell & R. L. Lowe (eds), Algal Ecology: Freshwater Benthic Ecosystems. Academic Press, San Diego, USA: 705–739.Google Scholar
  36. Patrick, R. & C. W. Reimer, 1966. The Diatoms of the United States Exclusive of Alaska and Hawaii, Vol. 1: Fragilariaceae, Eunotiaceae, Acahnanthaceae, Naviculaceae. The Academy of Natural Sciences of Philadelphia, Philadelphia, PA, USA: 688 pp.Google Scholar
  37. Patrick, R. & C. W. Reimer, 1975. The Diatoms of the United States Exclusive of Alaska and Hawaii, Vol. 2, Part 1: Entomoneidaceae, Cymbellaceae, Gomphonemancae, Epithemiaceae. The Academy of Natural Sciences of Philadelphia, Philadelphia, PA, USA: 213 pp.Google Scholar
  38. Pepin, D. M. & F. R. Hauer, 2002. Benthic responses to groundwater-surface water exchange in 2 alluvial rivers in northwestern Montana. Journal of the North American Benthological Society 21: 370–383.CrossRefGoogle Scholar
  39. Poole, G. C., 2000. Analysis and Dynamic Simulation of Morphologic Controls on Surface- and Ground-Water Flux in a Large Alluvial Flood Plain. University of Montana Missoula, MT, USA: 64 pp.Google Scholar
  40. Prescott, G. W., 1962. The Algae of the Western Great Lakes Area, With an Illustrated Key to the Genera of Desmids and Freshwater Diatoms. Wm. C. Brown Company, Dubuque, IA, USA: 977 pp.Google Scholar
  41. Prescott, G. W. & G. E. Dillard, 1979. A checklist of algal species reported from Montana, 1891–1977. Montana Academy of Sciences, Monograph No. 1, Supplement to the Proceedings, Vol. 38.Google Scholar
  42. SAS Institute, Inc., 2002. JMP Release, 5.0.1a. SAS Institute Inc. Cary, NC, USA.Google Scholar
  43. Spaulding, S. & L. Elwell, 2007. Increase in nuisance blooms and geographic expansion of the freshwater diatom Didymosphenia geminata (White paper). United States Environmental Protection Agency, 33 pp.Google Scholar
  44. Squires, L. E., S. R. Rushforth & D. J. Brotherson, 1979. Algal response to a thermal effluent: Study of a power station on the Provo River Utah, USA. Hydrobiologia 63: 1011–1017.CrossRefGoogle Scholar
  45. Stanford, J. A., 2006. Landscapes and riverscapes. In Hauer F. R. & G. A. Lamberti (eds), Methods in Stream Ecology, 2nd ed. Academic Press, San Diego, USA: 3–31.Google Scholar
  46. Stanford, J. A., M. S. Lorang & F. R. Hauer, 2005. The shifting habitat mosaic of river ecosystems. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 29: 123–136.Google Scholar
  47. Stanford, J. A. & J. V. Ward, 1988. The hyporheic habitat of river ecosystems. Nature 335: 64–66.CrossRefGoogle Scholar
  48. Stanford, J. A. & J. V. Ward, 1993. An ecosystem perspective of alluvial rivers: Connectivity and the hyporheic corridor. Journal of the North American Benthological Society 12: 48–60.CrossRefGoogle Scholar
  49. Stanford, J. A., J. V. Ward & B. K. Ellis, 1994. Ecology of the alluvial aquifers of the Flathead River, Montana. In Gibert, J., D. L. Danielopol & J. A. Stanford (eds), Groundwater Ecology. Academic Press, San Diego, USA: 367–390.Google Scholar
  50. Steinman, A. D. & G. A. Lamberti, 2006. Biomass and pigments of benthic algae. In Hauer, F. R. & G. A. Lamberti (eds), Methods in Stream Ecology, 2nd ed. Academic Press, San Diego, USA: 357–380.Google Scholar
  51. Steinman, A. D. & P. J. Mulholland, 2006. Phosphorus limitation, uptake, and turnover in stream algae. In Hauer, F. R. & G. A. Lamberti (eds), Methods in Stream Ecology, 2nd ed. Academic Press, San Diego, USA: 187–212.Google Scholar
  52. Stevenson, R. J., M. L. Bothwell & R. L. Lowe (eds), 1996. Algal Ecology: Freshwater Benthic Ecosystems. Academic Press, New York, USA: 753 pp.Google Scholar
  53. Stevenson, R. J. & S. L. Rollins, 2006. Ecological Assessments with Benthic Algae. In Hauer F. R. & G. A. Lamberti (eds), Methods in Stream Ecology, 2nd ed. Academic Press, San Diego, USA: 785–803.Google Scholar
  54. Tett, P., M. G. Kelly & G. M. Hornberger, 1975. A method for the spectrophotometric measurement of chlorophyll a and pheophytin a in benthic microalgae. Journal of Limnology and Oceanography 20: 887–896.CrossRefGoogle Scholar
  55. Valett, H. M., S. G. Fisher, N. B. Grimm & P. Camill, 1994. Vertical hydrologic exchange and ecological stability of a desert stream ecosystem. Ecology 75: 548–560.CrossRefGoogle Scholar
  56. Valett, H. M., S. G. Fisher & E. H. Stanley, 1990. Physical and chemical characteristics of the hyporheic zone of a Sonoran Desert stream. Journal of the North American Benthological Society 9: 201–215.CrossRefGoogle Scholar
  57. Vannote, R. L., G. W. Minshall, K. W. Cummings, J. R. Sedell & C. E. Cushing, 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Science 37: 130–137.Google Scholar
  58. Ward, J. V., 1985. Thermal characteristics of running water. Hydrobiologia 125: 31–46.CrossRefGoogle Scholar
  59. Ward, J. V., 1989. The four-dimensional nature of lotic ecosystems. Journal of the North American Benthological Society 8: 2–8.CrossRefGoogle Scholar
  60. Ward, J. V., 1997. An expansive perspective of riverine landscapes: Pattern and process across scales. Gaia 6: 52–60.Google Scholar
  61. Ward, J. V., G. Bretschko, M. Brunke, D. Danielopol, J. Gilbert, T. Gonser & A. G. Hildrew, 1998. The boundaries of river systems: The metazoan perspective. Freshwater Biology 40: 531–569.CrossRefGoogle Scholar
  62. Webster, J. R. & B. C. Patten, 1979. Effects of watershed perturbation on stream potassium and calcium dynamics. Ecological Monographs 49: 51–72.CrossRefGoogle Scholar
  63. Wehr J. D. & R. G. Sheath (eds), 2003. Freshwater Algae of North America: Ecology and Classification. Academic Press, New York, USA: 918 pp.Google Scholar
  64. White, D. S., 1993. Perspectives on defining and delineating hyporheic zones. Journal of the North American Benthological Society 12: 61–69.CrossRefGoogle Scholar
  65. Whited, D. C., J. A. Stanford & J. S. Kimball, 2003. Application of airborne multispectral digital imagery to characterize the riverine habitat. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie. 28: 1373–1380.Google Scholar
  66. Wondzell, M., 1992. Vegetation Patterns Along the Middle Fork of the Flathead River, Glacier National Park, Montana. Colorado State University Fort Collins, CO, USA: 243 pp.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Kevin H. Wyatt
    • 1
    • 2
    • 3
  • F. Richard Hauer
    • 2
  • George F. Pessoney
    • 1
  1. 1.Department of Biological SciencesThe University of Southern MississippiHattiesburgUSA
  2. 2.Flathead Lake Biological Station, Division of Biological SciencesThe University of MontanaPolsonUSA
  3. 3.Department of ZoologyMichigan State UniversityEast LansingUSA

Personalised recommendations