, 605:159 | Cite as

Biodiversity of groundwater oligochaetes from a karst unit in northern Iberian Peninsula: ranking subterranean sites for conservation management

Primary research paper


The present study suggests that the Santa Eufemia-Ereñozar karst unit in northern Iberian Peninsula is a biodiversity hotspot for groundwater oligochaetes, due to (1) the presence of a high number of stygobiotic species (corresponding to 18% of the total stygobionts known in southern Europe); (2) the comparatively high number of oligochaete species collected (corresponding to 35% of the total epigean and hypogean oligochaete species in the region); and (3) the presence of 5 species endemic to the region. A list of the oligochaete taxa found in the karst unit is presented and a conservation ranking of the cavities in the karst is proposed based on the application of four biodiversity indices (Species richness, Rarity, Vulnerability and Complementarity) to the oligochaete taxa. Vulnerability was evaluated for the first time for groundwater oligochaete taxa and it provided a useful tool to assess the protection status of oligochaetes in karstic systems. Groundwater conservation management strategies could incorporate biodiversity data from the present study.


Groundwater Oligochaeta Stygobiont Hotspot Biodiversity index Spain 



We are indebted to Gotzon Aranzabal, who was very helpful in speleological prospections. This work was supported by Catedra UNESCO (project UNESCO 04/04), by the Department of Environment and Regional Planning of the Basque Country and by a predoctoral grant from the University of the Basque Country for the junior author. We also wish to thank Ana I. Camacho and Steve Fend for critically reviewing the manuscript, and Boris Sket and an anonymous reviewer who helped to improve this article.


  1. Abellán, P., D. Sánchez-Fernández, J. Velasco & A. Millán, 2005a. Conservation of freshwater biodiversity: a comparison of different area selection methods. Biodiversity and Conservation 14: 3457–3474.CrossRefGoogle Scholar
  2. Abellán, P., D. Sánchez-Fernández, J. Velasco & A. Millán, 2005b. Assessing conservation priorities for insects: status of water beetles in southeast Spain. Biological Conservation 121: 79–90.CrossRefGoogle Scholar
  3. ADES, 2007. Catálogo de Simas y Cuevas de Urdaibai. Servicio Central de Publicaciones del Gobierno Vasco, Vitoria-Gasteiz (In press).Google Scholar
  4. Banarescu, P., 1992. Zoogeography of Fresh Waters. Vol. 2. Distribution and dispersal of fresh water animals in North America and Eurasia. AULA-Verlag, Wiesbaden.Google Scholar
  5. Baquero, R. A., 2001. Riqueza de especies, rareza y endemicidad de vertebrados europeos: análisis e implicaciones para la conservación. Universidad Complutense de Madrid PhD Thesis.Google Scholar
  6. Bellés, X., 1987. Fauna cavernícola i intersticial de la Península ibérica i les illes Balears. Consell superior d’investigacions científiques-Editorial Moll, Mallorca.Google Scholar
  7. Benayas, J. M. & E. de la Montaña, 2003. Identifying areas of high-value vertebrate diversity for strengthening conservation. Biological Conservation 114: 357–370.CrossRefGoogle Scholar
  8. Benayas, J. M, E. de la Montaña, J. Belliure & X. R. Eekhout, 2006. Identifying areas of high herpetofauna diversity that are threatened by planned infraestructura projects in Spain. Journal of Environmental Management 79: 279–289.PubMedCrossRefGoogle Scholar
  9. BOPV, 1989. Ley 5/1989, de 6 de julio, de protección y ordenación de la Reserva de la Biosfera de Urdaibai. Boletín Oficial del País Vasco 145.Google Scholar
  10. Camacho, A. I, A. G Valdecasas, J. Rodriguez, S. Cuezva, J. Lario & S. Sánchez-Moral, 2006. Habitat constraints in epikarstic waters of an Iberian Peninsula cave system. Annales de Limnologie—International Journal of Limnology 42: 127–140.CrossRefGoogle Scholar
  11. Castellarini, F., F. Malard, M. J. Dole-Olivier & J. Gibert, 2007. Modelling the distribution of stygobionts in the Jura Mountains (eastern France). Implications for the protection of ground waters. Diversity and Distributions 13: 213–224.Google Scholar
  12. Cernosvitov, L., 1939. Études Biospéologiques 10 (1). Catalogue des Oligochètes hypogés. Bulletin du Musée Royal d’Histoire Naturelle de Belgique 15: 1–92.Google Scholar
  13. Colwell, R. K., 2006. Estimates: statistical estimation of species richness and shared species from simples. Version 8.0. User’s Guide and application published at: http://purl.oclc.org/estimates.Google Scholar
  14. Colwell, R. K., C. X. Mao & J. Chang, 2004. Interpolating, extrapolating, and comparing incidence-based species accumulation curves. Ecology 85: 2717–2727.CrossRefGoogle Scholar
  15. Crisp, M. D., S. Laffan, H. P. Linder & A. Monro, 2001. Endemism in the Australian flora. Journal of Biogeography 28: 183–198.CrossRefGoogle Scholar
  16. Culver, D. C. & B. Sket, 2000. Hotspots of subterranean biodiversity in caves and wells. Journal of Cave and Karst Studies 62: 11–17.Google Scholar
  17. Culver, D. C., M. C. Christman, W. R Elliot, H. H. Hobbs III & J. R Reddell, 2003. The North American obligate cave fauna: regional patterns. Biodiversity and Conservation 12: 441–468.CrossRefGoogle Scholar
  18. Culver, D. C., M. C. Christman, B. Sket & P. Trontelj, 2004. Sampling adequacy in an extreme environment: species richness patterns in Slovenian caves. Biodiversity and Conservation 13: 1209–1229.CrossRefGoogle Scholar
  19. Culver, D. C, L. Deharveng, A. Bedos, J. J. Lewis, M. Madden, J. R. Reddell, B. Sket, P. Trontelf & D. White, 2006. The mid-latitude biodiversity ridge in terrestrial cave fauna. Ecography 29: 120–128.CrossRefGoogle Scholar
  20. Danielopol, D. L., R. Rouch & A. Baltanas, 2002. Taxonomic diversity of groundwater harpacticoida (Copepoda, Crustacea) in Southern France. Vie Milieu 52: 1–15.Google Scholar
  21. Delay, B., 1973. Deux nouveaux Oligochètes Haplotaxidae troglobies d’Espagne: Haplotaxis navarrensis n. sp. et Haplotaxis cantabronensis n. sp. Anales de Spéléologie 28: 405–411.Google Scholar
  22. Dumnicka, E., 1990. Oligochaetes from subterranean waters of Italy and Greece. Mémoires de Biospéologie, Tome XVII: 163–168.Google Scholar
  23. EEC, 1992. Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. Official Journal L 206: 0007–0050 (22/07/1992).Google Scholar
  24. Elliot, W. R, 2005. Protecting Caves and Cave Life. In Culver, D. C & W. B White (eds), Encyclopedia of Caves. Elservier, California: 458–467.Google Scholar
  25. EVE, 1996. Mapa hidrogeológico del País Vasco. Ente Vasco de la Energía, Bilbao.Google Scholar
  26. Ferreira, D., F. Malard, M.-J. Dole-Olivier & J. Gibert, 2007. Obligate groundwater fauna of France: diversity patterns and conservation implications. Biodiversity and Conservation 16: 567–596.CrossRefGoogle Scholar
  27. Gaston, K. J., 1994. Rarity. Chapman & Hall, London.Google Scholar
  28. Giani, N. & E. Martinez-Ansemil, 1981. Observaciones acerca de algunos Tubificidae (Oligochaeta) de la Península Ibérica, con la descripción de Phallodrilus riparius n. s. Annales de Limnologie 17: 201–209.Google Scholar
  29. Giani, N. & P. Rodriguez, 1988. Description de quelques espèces nouvelles de Tubificidae (Oligochaeta) de grotes et de sources karstiques de la péninsule ibérique. Stygologia 4: 121–137.Google Scholar
  30. Giani, N. & P. Rodriguez, 1994. New species of the genus Trichodrilus (Oligochaeta, Lumbriculidae). Zoologica Scripta 23: 33–41.CrossRefGoogle Scholar
  31. Giani, N., B. Sambugar, P. Rodriguez & E. Martinez-Ansemil, 2001. Oligochaetes in southern European groundwater: new records and an overview. Hydrobiologia 463: 65–74.CrossRefGoogle Scholar
  32. Gibert, J. & L. Deharveng, 2002. Subterranean ecosystems: a truncated functional biodiversity. Bioscience 52: 473–481.CrossRefGoogle Scholar
  33. Gotelli, N. & R. K Colwell, 2001. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters 4: 379–391.CrossRefGoogle Scholar
  34. Hrabe, S., 1963. On Rhyacodrilus lindbergi n. sp., a new cavernicolous species of the family Tubificidae (Oligochaeta) from Portugal. Boletim da Sociedade Portuguesa de Ciências Naturais 10: 52–56.Google Scholar
  35. Juberthie, C., 2005. Conservation of subterranean habitats and species. In Wilkens H, D. C. Culver & W. F. Humphreys (eds), Caves and Other Subterranean Ecosystems. Ecosystems of the World 30. Elsevier, Amsterdam: 691–700.Google Scholar
  36. Juget, J. & E. Dumnicka, 1986. Oligochaeta (including Aphanoneura) des eaux souterraines continentals. In Botosaneanu, L. (ed.), Stygofauna Mundi. E. J. Brill/Dr W. Backhuys, Leiden: 234–244.Google Scholar
  37. Kerr, J. T., 1997. Species Richness, Endemism, and the Choice of Areas for Conservation. Conservation Biology 11: 1094–1100.CrossRefGoogle Scholar
  38. Notenboom, J., 1986. The species of the genus Pseudoniphargus Chevreux, 1901 (Amphipoda) from northern Spain. Bijdragen tot de Dierkunde 56: 75–122.Google Scholar
  39. Rabinowitz, D., S. Cairns & T. Dillon, 1986. Seven Forms of Rarity and Their Frequency in the Flora of the British Isles. In Soulé, M. (ed.), Conservation Biology. The Science of Scarcity and Diversity. Sinauer, Mass: 182–204.Google Scholar
  40. Reid, W. R, 1998. Biodiversity hotspots. Tree 13: 275–280.Google Scholar
  41. Rodriguez, P., 1986a. Nuevos resultados acerca de la fauna de oligoquetos acuáticos del País Vasco y cuenca alta del Ebro. 1. Haplotaxidae, Naididae y Tubificidae. Munibe Ciencias Naturales 38: 75–80.Google Scholar
  42. Rodriguez, P., 1986b. Nuevos resultados acerca de la fauna de oligoquetos acuáticos del País Vasco y cuenca alta del Ebro. 2. Enchytraeidae. Munibe Ciencias Naturales 38: 81–87.Google Scholar
  43. Rodriguez, P. & J. C Armas, 1983. Contribution à la connaissance de la faune d’Oligochètes aquatiques du pays basque et zones limitrophes. Annales de Limnologie 19: 93–100.CrossRefGoogle Scholar
  44. Rodriguez, P. & N. Giani, 1984. Description de Varichaetadrilus bizkaiensis n. sp.; nouvelle espèce de Tubificidae (Oligochaeta) d’Espagne. Bulletin de la Société d’Histoire Naturelle de Toulouse 120: 127–130.Google Scholar
  45. Rodriguez, P. & N. Giani, 1986. Description de trios espèces nouvelles d’Oligochètes aquatiques du Pays Basque (Espagne). Hydrobiologia 139: 269–276.CrossRefGoogle Scholar
  46. Rodriguez, P. & N. Giani, 1987. Sur deux espèces de Lumbriculidae (Oligochaeta) cavernicoles: Cookidrilus speluncaeus n. gen., n. sp. et Trichodrilus diversisetosus Rodriguez, 1986. Bulletin de la Société d’Histoire Naturelle de Toulouse 123: 45–49.Google Scholar
  47. Rodriguez, P. & N. Giani, 1989. New species of Phallodrilus (Oligochaeta, Tubificidae) from caves of northern Spain and southwestern France. Hydrobiologia 180: 57–63.CrossRefGoogle Scholar
  48. Schneider, K. & D. C Culver, 2004. Estimating subterranean species richness using intensive sampling and rarefaction curves in a high density cave region in West Virginia. Journal of Cave and Karst Studies 66: 39–45.Google Scholar
  49. Sket, B., 1999a. High biodiversity in hypogean waters and its endangerment. The situation in Slovenia, the Dinaric karst, and Europe. Crustaceana 72: 767–779.CrossRefGoogle Scholar
  50. Sket, B., 1999b. The nature of biodiversity in hypogean waters and how it is endangered. Biodiversity and Conservation 8: 1319–1338.CrossRefGoogle Scholar
  51. SPSS (2005) SPSS 14.0 for Windows. Rel. 14.0.4 SPSS Inc., Chicago, USA.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of Zoology and Animal Cell Biology, Faculty of Science and TechnologyUniversity of the Basque Country UPV/EHUBilbaoSpain

Personalised recommendations