, Volume 605, Issue 1, pp 113–122 | Cite as

Emergent and floating-leaved macrophytes as refuge for zooplankton in a eutrophic temperate lake without submerged vegetation

  • Matteo Cazzanelli
  • Trine Perlt Warming
  • Kirsten Seestern Christoffersen
Primary research paper


Several studies have shown that submerged macrophytes provide a refuge for zooplankton against fish predation, whereas the role of emergent and floating-leaved species, which are often dominant in eutrophic turbid lakes, is far less investigated. Zooplankton density in open water and amongst emergent and floating-leaved vegetation was monitored in a small, eutrophic lake (Frederiksborg Slotssø) in Denmark during July–October 2006. Emergent and floating-leaved macrophytes harboured significantly higher densities of pelagic as well as plant-associated zooplankton species, compared to the open water, even during periods where the predation pressure was presumably high (during the recruitment of 0+ fish fry). Zooplankton abundance in open water and among vegetation exhibited low values in July and peaked in August. Bosmina and Ceriodaphnia dominated the zooplankton community in the littoral vegetated areas (up to 4,400 ind l−1 among Phragmites australis and 11,000 ind l−1 between Polygonum amphibium stands), whereas the dominant species in the pelagic were Daphnia (up to 67 ind l−1) and Cyclops (41 ind l−1). The zooplankton density pattern observed was probably a consequence of concomitant modifications in the predation pressure, refuge availability and concentration of cyanobacteria in the lake. It is suggested that emergent and floating-leaved macrophytes may play an important role in enhancing water clarity due to increased grazing pressure by zooplankton migrating into the plant stands. As a consequence, especially in turbid lakes, the ecological role of these functional types of vegetation, and not merely that of submerged macrophyte species, should be taken into consideration.


Zooplankton Emergent Macrophytes Refuge Predation Eutrophic 



We wish to thank Charlotte Møller and Nils Willumsen, both from the Freshwater Biological Laboratory, for technical assistance and Erik Jeppesen from the National Environmental Research Institute, and two anonymous referees for valuable comments to an earlier version of the manuscript.


  1. Andersen, J. M. & O. S. Jacobsen, 1979. Production and decomposition of organic matter in eutrophic Frederiksborg Slotssø, Denmark. Archiv Für Hydrobiologie 85: 511–542.Google Scholar
  2. Burks, R. L., D. M. Lodge, E. Jeppesen, et al., 2002. Diel horizontal migration of zooplankton: costs and benefits of inhabiting the littoral. Freshwater Biology 47: 343–365.CrossRefGoogle Scholar
  3. Burks, R. L., G. Mulderij, E. Gross, et al., 2006. Center stage: the crucial role of macrophytes in regulating trophic interactions in shallow lake wetlands. In Bobbink, R., J. T. A. Verhoeven & D. E. Whigham (eds), Wetlands: functioning, biodiversity conservation, and restoration. Springer-Verlag, Berlin, Germany: 37–59.Google Scholar
  4. Canfield, D., E. J. V. Shireman, D. E. Colle, et al., 1984. Prediction of chlorophyll a concentrations in Florida lakes—importance of aquatic macrophytes. Canadian Journal of Fisheries and Aquatic Sciences 41: 497–501.CrossRefGoogle Scholar
  5. Carpenter, S. R., J. F. Kitchell & J. R. Hodgson, 1985. Cascading trophic interactions and lake productivity. Bioscience 35: 634–639.CrossRefGoogle Scholar
  6. Christoffersen K., 1990. Evaluation of Chaoborus predation on natural populations of herbivorous zooplankton in a eutrophic lake. Hydrobiologia 200: 459–466.CrossRefGoogle Scholar
  7. Christoffersen K., 1996. Ecological implications of cyanobacterial toxins in aquatic food webs. Phycologia 35: 42–50.CrossRefGoogle Scholar
  8. Christoffersen, K., B. Riemann, A. Klysner, et al., 1993. Potential role of fish predation and natural populations of zooplankton in structuring a plankton community in eutrophic lake water. Limnology and Oceanography 38: 561–573.Google Scholar
  9. Cryer, M., G. Peirson & C. R. Townsend, 1986. Reciprocal interactions between roach, Rutilus rutilus, and zooplankton in a small lake—prey dynamics and fish growth and recruitment. Limnology and Oceanography 31: 1022–1038.CrossRefGoogle Scholar
  10. Jeppesen, E., T. L. Lauridsen, T. Kairesalo, M. R. Perrow, 1998. Impact of submerged macrophytes on fish–zooplankton interactions in lakes. In Jeppesen, E., Ma. Søndergaard, Mo. Søndergaard & K Christoffersen (eds), The structuring role of submerged macrophytes in lakes. Springer-Verlag, NY, USA: 91–114.Google Scholar
  11. Jeppesen, E., Z. Pekcan-Hekim, T. L. Lauridsen, et al., 2006. Habitat distribution of fish in late summer: changes along a nutrient gradient in Danish lakes. Ecology of Freshwater Fish 15: 180–190.CrossRefGoogle Scholar
  12. Jeppesen, E., M. Søndergaard, M. Meerhoff, et al., 2007a. Shallow lake restoration by nutrient loading reduction—some recent findings and challenges ahead. Hydrobiologia 584: 239–252.CrossRefGoogle Scholar
  13. Jeppesen, E., M. Meerhoff, B. A. Jacobsen, et al., 2007b. Restoration of shallow lakes by nutrient control and biomanipulation—the successful strategy varies with lake size and climate. Hydrobiologia 581: 269–285.CrossRefGoogle Scholar
  14. Jespersen, A. M. & K. Christoffersen, 1987. Measurements of chlorophyll a from phytoplankton using ethanol as extraction solvent. Archiv Für Hydrobiologie 109: 445–454.Google Scholar
  15. Jespersen, A. M., K. Christoffersen, B. Riemann, 1988. Annual carbon fluxes between phyto-, zoo-, and bacterio-plankton in eutrophic, Lake Frederiksborg Slotssø, Denmark. Verhandlunge, International Verein Limnologie 23: 440–444.Google Scholar
  16. Lauridsen, T. L. & D. M. Lodge, 1996. Avoidance by Daphnia magna of fish and macrophytes: chemical cues and predator mediated use of macrophyte habitat. Limnology and Oceanography 41(4): 794–798.CrossRefGoogle Scholar
  17. Lauridsen, T. L., L. J. Pedersen, E. Jeppesen, et al., 1996. The importance of macrophyte bed size for Cladoceran composition and horizontal migration an a shallow lake. Journal of Plankton Research 18: 2283–2294.CrossRefGoogle Scholar
  18. Mischke, U., 2003. Cyanobacteria associations in shallow polytrophic lakes: influence of environmental factors. Acta Oecologica International Journal of Ecology 24(Suppl. 1): S11–S23.CrossRefGoogle Scholar
  19. Müller, J. P. & Jensen, H. J., 2004. The fish stocks in Frederiksborg Slotssø, September 2004. Internal report (in Danish), 30 pp.Google Scholar
  20. Nurminen, L., J. Horppila & P. Tallberg, 2001. Seasonal development of the Cladoceran assemblage in a turbid lake: the role of emergent macrophytes. Archiv Für Hydrobiologie 151: 127–140.Google Scholar
  21. Nurminen, L., J. Horppila & Z. Pekcan-Hekim, 2007. Effect of light and predator abundance on the habitat choice of plant-attached zooplankton. Freshwater Biology 52: 539–548.CrossRefGoogle Scholar
  22. Pennak, R. W., 1966. Structure of zooplankton populations in littoral macrophyte zone of some Colorado lakes. Transactions of the American Microscopical Society 85: 329–349.CrossRefGoogle Scholar
  23. Rasmussen, H. U., 2001. Frederiksborg Slotssø, 1999—Vandmiliøovervågning Nr. 85. Frederiksborg Amt, Teknik & Miljø Miljøafdelingen, Frederiksborg County, Denmark (in Danish), 48 pp.Google Scholar
  24. Rohrlack, T., K. Christoffersen, P. E. Hansen, et al., 2003. Isolation, characterization, and quantitative analysis of microviridin J, a new Microcystis metabolite toxic to Daphnia. Journal of Chemical Ecology 29: 1757–1770.PubMedCrossRefGoogle Scholar
  25. Scheffer, M., S. H. Hosper, M. L. Meijer, et al., 1993. Alternative equilibria in shallow lakes. Trends in Ecology & Evolution 8: 275–279.CrossRefGoogle Scholar
  26. Søndergaard, M. & B. Moss, 1998. Impact of submerged macrophytes on phytoplankton in shallow freshwater lakes. In Jeppesen, E., Ma. Søndergaard, Mo. Søndergaard & K. Christoffersen (eds), The structuring role of submerged macrophytes in lakes. Springer Verlag, NY, USA: 115–132.Google Scholar
  27. Stansfield, J. H., M. R. Perrow, L. D. Tench, et al., 1997. Submerged macrophytes as refuges for grazing Cladocera against fish predation: observations on seasonal changes in relation to macrophyte cover and predation pressure. Hydrobiologia 342: 229–240.CrossRefGoogle Scholar
  28. Statistica (ver. 6.0), 2003. Statsoft, Scandinavia, Uppsala, Sweden.Google Scholar
  29. Timms, R. M. & B. Moss, 1984. Prevention of growth of potentially dense phytoplankton populations by zooplankton grazing in the presence of zooplanktivorous fish. In: A shallow wetland ecosystem. Limnology and Oceanography 29: 472–486.Google Scholar
  30. Utermöhl, H., 1958. Zur Vervollkommung der quantitatven Phytoplankont-Metodik. Mitt. Unt. Ver. Limnol. 9: 1–38.Google Scholar
  31. Vuille, T., 1991. Abundance, standing crop and production of microcrustacean population (Cladocera, Copepoda) in the littoral zone of lake Biel, Switzerland. Archiv Für Hydrobiologie 123: 165–185.Google Scholar
  32. Winfield, I. J., 1986. The influence of simulated aquatic macrophytes on the zooplankton consumption rate of juvenile roach, Rutilus rutilus, rudd, Scardinius erythrophthalmus, and perch, Perca fluviatilis. Journal of Fish Biology 29(Suppl. A): 37–48.CrossRefGoogle Scholar
  33. Winfield, I. J., G. Peirson, M. Cryer, et al., 1983. The behavioural basis of prey selection by under yearling breams (Abramis brama (L.)) and roach (Rutilus rutilus (L.)). Freshwater Biology 13: 139–149.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Matteo Cazzanelli
    • 1
  • Trine Perlt Warming
    • 1
  • Kirsten Seestern Christoffersen
    • 1
  1. 1.Freshwater Biological LaboratoryUniversity of CopenhagenHillerodDenmark

Personalised recommendations