Skip to main content

Advertisement

Log in

Biochemical adaptation for dormancy in subitaneous and dormant eggs of Daphnia magna

  • CLADOCERA
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Daphnia can reproduce through subitaneous and dormant eggs. The production of dormant eggs is induced by stimuli associated with deteriorating growth conditions, and enable Daphnia populations to survive temporarily harsh environmental conditions. Dormant eggs are expected to have developed special biochemical adaptations to bridge this long unfavourable period, but little comparative biochemical data are available for dormant and subitaneous eggs. We compared levels of the following molecules between subitaneous and dormant eggs: (a) triglycerides, which are the most abundant energy storage molecules in Daphnia, (b) glycerol, a cryoprotectant also involved in energy storage, and (c) the heat shock protein Hsp60, a molecular chaperone that may assist in maintaining protein structural integrity and inhibiting cell metabolism during diapause. Unexpectedly, no difference in triglycerides content between egg types was found. As expected, dormant eggs contained more glycerol and relatively more Hsp60 than subitaneous eggs. The biochemical composition of dormant eggs can therefore be seen as an adaptation to the harsh environmental conditions these eggs encounter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Arbaciauskas, K., 1998. Life-history traits of exephippial and parthenogenetically derived daphnids: indicators of different life-history strategies. Archiv für Hydrobiologie 52: 339–358.

    Google Scholar 

  • Arbaciauskas, K., 2004. Life-history characteristics and fitness in descendents of parthenogenetic and ex-ephippio females of Daphnia magna. Hydrobiologia 526: 211–218.

    Article  Google Scholar 

  • Arbaciauskas, K. & W. Lampert, 2003. Seasonal adaptation of ex-ephippio and parthenogenetic offspring of Daphnia magna: differences in life history and physiology. Functional Ecology 17: 431–437.

    Article  Google Scholar 

  • Caceres, C. E., 1998. Interspecific variation in the abundance, production, and emergence of Daphnia diapausing eggs. Ecology 79: 1699–1710.

    Google Scholar 

  • Clegg, J. S., J. K. Willsie & S. A. Jackson, 1999. Adaptive significance of a small heat shock/alpha-crystallin protein (P26) in encysted embryos of the brine shrimp, Artemia franciscana. American Zoologist 39: 836–847.

    CAS  Google Scholar 

  • Cousyn, C., & L. De Meester, 1998. The vertical profile of resting banks in natural populations of the pond-dwelling cladoceran Daphnia magna Strauss. Archiv für Hydrobiologie, Special Issues Advances in Limnologie 52: 127–139.

    Google Scholar 

  • Denlinger, D. L., 2002. Regulation of diapause. Annual Review of Entomology 47: 93–122.

    Article  PubMed  CAS  Google Scholar 

  • Denlinger, D. L., J. P. Rinehart & G. D.Yocum, 2001. Stress proteins: a role in insect diapause? In Denlinger, D. L., J. M. Giebultowicz & D. S. Saunders (eds), Insect Tming: Circadian Rhythmicity to Seasonality. Elsevier, Amsterdam: 155–171.

    Google Scholar 

  • Gilbert, J. J., 2004. Females from resting eggs and parthenogenetic eggs in the rotifer Brachionus calyciflorus: lipid droplets, starvation resistance and reproduction. Freshwater Biology 49: 1505–1515.

    Article  Google Scholar 

  • Gilbert, J. J. & T. Schröder, 2004. Rotifers from diapausing, fertilized eggs: unique features and emergence. Limnology and Oceanography 49: 1341–1354.

    Article  Google Scholar 

  • Gilbert, J. J. & C. E. Williamson, 1983. Sexual dimorphism in zooplankton (Copepoda, Cladocera, and Rotifera). Annual Review of Ecology and Systematics 14: 1–33.

    Article  Google Scholar 

  • Hairston, N. G. Jr., A.-M. Hansen & W. R. Schaffner, 2000. The effect of diapause emergence on the seasonal dynamics of a zooplankton assemblage. Freshwater Biology 45: 133–145.

    Article  Google Scholar 

  • Kimura, M. T., T. Awasaki, T. Ohtsu & K. Shimada, 1992. Seasonal-changes in glycogen and trehalose content in relation to winter survival of 4 temperate species of Drosophila. Journal of Insect Physiology 38: 871–875.

    Article  CAS  Google Scholar 

  • Krebs, R. A. & M. E. Feder, 1997. Deleterious consequences of Hsp70 overexpression in Drosophila melanogaster larvae. Cell Stress & Chaperones 2: 60–71.

    Article  CAS  Google Scholar 

  • Lencioni, V., 2004. Survival strategies of freshwater insects in cold environments. Journal of Limnology 63(Suppl. 1): 45–55.

    Google Scholar 

  • Lundebye, A. K., G. R. Vedel, A. M. K. Christensen, K. Kristiansen, D. Hunter & M. H. Depledge, 1995. Improved quantification of stress proteins by Western blotting. Analitica Chimica Acta 311: 109–114.

    Article  CAS  Google Scholar 

  • Parsell, D. A. & S. Lindquist, 1993. The function of heat-shock proteins in stress tolerance – degradation and reactivation of damaged proteins. Annual Review of Genetics 27: 437–496.

    Article  PubMed  CAS  Google Scholar 

  • Pauwels, K., R. Stoks & L. De Meester, 2005. Coping with predator stress: interclonal differences in induction of heat-shock proteins in the water flea Daphnia magna. Journal of Evolutionary Biology 18: 867–872.

    Article  PubMed  CAS  Google Scholar 

  • Peters, R. H., 1987. Metabolism in Daphnia. Memorie dell’Instituto Italiano di Idrobiologia, 45: 193–243.

    Google Scholar 

  • Pijanowska, J. & M. Kloc, 2004. Daphnia response to predation threat involves heat-shock proteins and the actin and tubulin cytoskeleton. Genesis 38: 81–86.

    Article  PubMed  CAS  Google Scholar 

  • Pockley, A. G., 2003. Heat shock proteins as regulators of the immune response. Lancet 362: 469–476.

    Article  PubMed  CAS  Google Scholar 

  • Roff, D. A., 1992. The Eolution of Life Histories: Theory and Analysis. Chapman & Hall, New York.

    Google Scholar 

  • Sørensen, J. G., T. N. Kristensen & V. Loeschcke, 2003. The evolutionary and ecological role of heat shock proteins. Ecology Letters 6: 1025–1037.

    Article  Google Scholar 

  • Stearns, S. C., 1992. The Evolution of Life Histories. Oxford University Press, New York.

    Google Scholar 

  • Stibor, H. & D. Müller Navarra, 2000. Constraints on the plasticity of Daphnia magna influenced by fish-kairomones. Functional Ecology 14: 455–459.

    Article  Google Scholar 

  • Storey, K. B., 1997. Organic solutes in freezing tolerance. Comparative Biochemistry and Physiology. A. Physiology 117: 319–326.

    Article  CAS  Google Scholar 

  • Stross, R. G. & R. G. Hill, 1965. Diapause induction in Daphnia requires two stimuli. Science 150: 1462–1464.

    Article  PubMed  CAS  Google Scholar 

  • Tessier, A. J., L. L. Henry, C. E. Goulden & M. W. Durand, 1983. Starvation in Daphnia – energy reserves and reproductive allocation. Limnology and Oceanography 28: 667–676.

    Article  Google Scholar 

Download references

Acknowledgements

We thank three anonymous referees for their detailed and to-the-point comments of an early version of the manuscript, and Lisa Shama for the grammatical revision. Kevin Pauwels acknowledges financial support from IWT Flanders; Robby Stoks is a post-doctoral researcher with the Fund for Scientific Research (Flanders—FWO). This research was financially supported by FWO grant G.0269.04 and K.U.Leuven Research grant OT/04/23.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Pauwels.

Additional information

Guest editor: Piet Spaak

Cladocera: Proceedings of the 7th International Symposium on Cladocera

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pauwels, K., Stoks, R., Verbiest, A. et al. Biochemical adaptation for dormancy in subitaneous and dormant eggs of Daphnia magna . Hydrobiologia 594, 91–96 (2007). https://doi.org/10.1007/s10750-007-9091-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-007-9091-4

Keywords

Navigation