, Volume 593, Issue 1, pp 19–26 | Cite as

An individual-based population model for the prediction of rotifer population dynamics and resting egg production

  • M. O. Alver
  • A. Hagiwara
Advances in Rotifer Research


Most species of rotifers have a combination of sexual and asexual reproduction, with sexual reproduction resulting in resting eggs, which can lay dormant for long periods. The occurrence of sexual reproduction affects population dynamics through the temporary presence of male rotifers, and a reduction in the growth of the number of female rotifers. A previously published, individual-based model used dynamic energy budget theory to describe rotifer food intake, growth, egg production, and mortality, but assumed asexual reproduction only. In the current study, we have expanded the model to describe the entire reproductive cycle of the rotifers, making it usable for investigating relationships, such as those between the signal triggering mictic egg production, and the timing and number of resting eggs produced. The model is intended for use in predicting the specific future development of cultures, for instance, as a process model in rotifer or resting egg production for aquaculture.


Modeling Rotifera Brachionus plicatilis Mixis Males 


  1. Alver, M. O., J. A. Alfredsen & Y. Olsen, 2006. An individual-based population model for rotifer (Brachionus plicatilis) cultures. Hydrobiologia 560: 93–108.CrossRefGoogle Scholar
  2. Aparici, E., M. J. Carmona & M. Serra, 1998. Sex allocation in haplodiploid cyclical parthenogens with density-dependent proportion of males. American Naturalist 152: 652–657.CrossRefPubMedGoogle Scholar
  3. Carmona, M. J., M. Serra & M. R. Miracle, 1993. Relationships between mixis in Brachionus plicatilis and preconditioning of culture medium by crowding. Hydrobiologia 255/256: 145–152.CrossRefGoogle Scholar
  4. Gilbert, J. J., 1974. Dormancy in rotifers. Transactions of the American Microscopical Society 93: 490–513.CrossRefGoogle Scholar
  5. Gomez, A. & M. Serra, 1996. Mate choice in male Brachionus plicatilis rotifers. Functional Ecology 10: 681–687.CrossRefGoogle Scholar
  6. Hagiwara, A., K. Hamada, S. Hori & K. Hirayama, 1994. Increased sexual reproduction in Brachionus plicatilis (Rotifera) with the addition of bacteria and rotifer extracts. Journal of Experimental Marine Biology and Ecology 181: 1–8.CrossRefGoogle Scholar
  7. Hagiwara, A., A. Hino & R. Hirano, 1988. Effects of temperature and chlorinity on resting egg formation in the rotifer Brachionus plicatilis. Nippon Suisan Gakkaishi 54: 569–575.Google Scholar
  8. Hino, A. & R. Hirano, 1976. Ecological studies on the mechanism of bisexual reproduction in the rotifer Brachionus plicatilis – I. General aspects of bisexual reproduction inducing factors. Bulletin of the Japanese Society of Scientific Fisheries 42: 1093–1099.Google Scholar
  9. Holling, C. S., 1965. The functional response of predators to prey density and its role in mimicry and population regulation. Memoirs of the Entomological Society of Canada.Google Scholar
  10. King, C. E. & M. R. Miracle, 1980. A perspective on aging in rotifers. Hydrobiologia 73: 13–19.CrossRefGoogle Scholar
  11. Kooijman, S. A. L. M., 2000. Dynamic energy and mass budgets in biological systems. Cambridge University Press.Google Scholar
  12. Lubzens, E., Y. Wax, G. Minkoff & F. Adler, 1993. A model evaluating the contribution of environmental factors to the production of resting eggs in the rotifer Brachionus plicatilis. Hydrobiologia 255/256: 127–138.CrossRefGoogle Scholar
  13. Pourriot, R. & T. W. Snell, 1983. Resting eggs in rotifers. Hydrobiologia 104: 213–224.CrossRefGoogle Scholar
  14. Scheffer, M., J. M. Baveco, D. L. DeAngelis, K. A. Rose & E. H. Van Nes, 1995. Super-individuals a simple solution for modelling large populations on an individual basis. Ecological Modelling 80: 161–170.CrossRefGoogle Scholar
  15. Serra, M. & M. J. Carmona, 1993. Mixis strategies and resting egg production of rotifers living in temporally-varying habitats. Hydrobiologia 255/256: 117–126.CrossRefGoogle Scholar
  16. Serra, M., T. W. Snell & J. J. Gilbert, 2005. Delayed mixis in rotifers: an adaptive response to the effects of density-dependent sex on population growth. Journal of Plankton Research 27: 37–45.CrossRefGoogle Scholar
  17. Snell, T. W. & B. L. Garman, 1986. Encounter probabilities between male and female rotifers. Journal of Experimental Marine Biology and Ecology 97: 221–230.CrossRefGoogle Scholar
  18. Snell, T., J. Kubanek, W. Carter, A. B. Payne, J. Kim, M. K. Hicks & C. P. Stelzer, 2006. A protein signal triggers reproduction in Brachionus plicatilis (Rotifera). Marine Biology 149: 763–773.CrossRefGoogle Scholar
  19. Stelzer, C. P. & T. W. Snell, 2003. Induction of sexual reproduction in Brachionus plicatilis (Monogononta, Rotifera) by a density-dependent chemical cue. Limnology and Oceanography 48: 939–943.CrossRefGoogle Scholar
  20. Vadstein, O., G. Øie & Y. Olsen, 1993. Particle size dependent feeding by the rotifer Brachionus plicatilis. Hydrobiologia 255/256: 261–267.CrossRefGoogle Scholar
  21. Walpole, R. E., R. H. Myers & S. L. Myers, 1998. Statistics for engineers and scientists. Prentice Hall International.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Department of Engineering CyberneticsNorwegian University of Science and Technology (NTNU)TrondheimNorway
  2. 2.Graduate School of Science & TechnologyNagasaki UniversityNagasakiJapan

Personalised recommendations