, Volume 593, Issue 1, pp 121–128 | Cite as

Intraclonal variation in propensity for mixis in several rotifers: variation among females and with maternal age

  • John J. Gilbert
  • Thomas Schröder
Advances in Rotifer Research


In 14 previously published experiments with clones of three species of Brachionus, Epiphanes ukera, and Rhinoglena frontalis, females cultured singly in small volumes from birth through most of their reproductive period usually produced some mictic daughters. Here, these data are analyzed to test two hypotheses: the propensity of females in a clone to produce mictic daughters will vary significantly among females, and will decrease with female age. Significant heterogeneity (χ2) among replicate females was demonstrated in two clones of B. calyciflorus from Florida, in single clones of this species from Georgia, Texas, Spain, and Australia, in a clone of B. angularis from Argentina, and in single clones of E. ukera and R. frontalis from Germany. No significant heterogeneity was found in two other clones of B. calyciflorus from Florida and in a clone of B. variabilis from Spain. Significant heterogeneity among females of a clone could be caused by chance fluctuations during development, differences in birth order, or epimutations. This heterogeneity is an important component of a bet-hedging strategy to balance production of diapausing fertilized eggs and future population growth by female parthenogenesis. The propensity of a female to produce mictic daughters did not decrease with her age. In experiments with six different clones from four strains of B. calyciflorus, and with single clones of E. ukera and R. frontalis, only one clone of B. calyciflorus showed significant variation (ANOVA) in the proportion of mictic daughters produced in three or four successive one- or two-day periods. In this clone the proportion of mictic daughters increased with maternal age.


Bet-hedging Maternal-age effects Sexual reproduction 



We are grateful to Claus-Peter Stelzer and two anonymous referees for helpful comments on the manuscript.


  1. Bennett, W. N. & M. E. Boraas, 1988. Isolation of a fast-growing strain of the rotifer Brachionus calyciflorus Pallas using turbidostat culture. Aquaculture 73: 27–36.CrossRefGoogle Scholar
  2. Carmona, M. J., M. Serra & M. R. Miracle, 1994. Effect of population density and genotype on life-history traits in the rotifer Brachionus plicatilis O. F. Müller. Journal of Experimental Marine Biology and Ecology 182: 223–235.CrossRefGoogle Scholar
  3. Clément, P. & R. Pourriot, 1979. Influence de l’âge des grand-parents sur l’apparition des mâles chez le Rotifère Notommata copeus Ehr. International Journal of Invertebrate Reproduction 1: 89–98.Google Scholar
  4. Finch, C. E. & T. B. Kirkwood, 2000. Chance, Development, and Aging. Oxford University Press.Google Scholar
  5. Fussmann, G. F., S. P. Ellner & N. G. Hairston Jr., 2003. Evolution as a critical component of plankton dynamics. Proceedings of the Royal Society of London B 270: 1015–1022.Google Scholar
  6. Fussmann, G. F., G. Kramer & M. Labib, 2007. Incomplete induction of mixis in Brachionus calyciflorus: patterns of reproduction at the individual level. Hydrobiologia doi: 10.1007/s10750-007-9041-1.
  7. Gilbert, J. J., 1968. Dietary control of sexuality in the rotifer Asplanchna brightwelli. Physiological Zoology 41: 14–43.Google Scholar
  8. Gilbert, J. J., 1998. Asexual diapause in the rotifer Synchaeta: diversified bet-hedging, energetic cost and age effects. Archiv für Hydrobiologie, Advances in Limnology 52: 97–107.Google Scholar
  9. Gilbert, J. J., 2002. Endogenous regulation of environmentally induced sexuality in a rotifer: a multigenerational parental effect induced by fertilization. Freshwater Biology 47: 1633–1641.CrossRefGoogle Scholar
  10. Gilbert, J. J., 2003a. Specificity of the crowding response that induces sexuality in the rotifer Brachionus. Limnology and Oceanography 48: 1297–1303.CrossRefGoogle Scholar
  11. Gilbert, J. J., 2003b. Environmental and endogenous control of sexuality in a rotifer life cycle: developmental and population biology. Evolution & Development 5: 19–24.CrossRefGoogle Scholar
  12. Gilbert, J. J., 2004. Population density, sexual reproduction and diapause in monogonont rotifers: new data for Brachionus and a review. Journal of Limnology 63(Suppl): 32–36.Google Scholar
  13. Gilbert, J. J. & D. K. Schreiber, 1998. Asexual diapause induced by food limitation in the rotifer Synchaeta pectinata. Ecology 79: 1371–1381.Google Scholar
  14. Gilbert, J. J. & E. J. Walsh, 2005. Brachionus calyciflorus is a species complex: mating behavior and genetic differentiation among four geographically isolated strains. Hydrobiologia 546: 257–265.CrossRefGoogle Scholar
  15. Kalisz, S. & M. D. Purugganan, 2004. Epialleles via DNA methylation: consequences for plant evolution. Trends in Ecology and Evolution 19: 309–314.PubMedCrossRefGoogle Scholar
  16. Lubzens, E. & G. Minkoff, 1988. Influence of the age of algae fed to rotifers (Brachionus plicatilis O.F. Müller) on the expression of mixis in their progenies. Oecologia 75: 430–435.CrossRefGoogle Scholar
  17. Pourriot, R. & C. Rougier, 1976. Influence de l’âge des parents sur la production de femelles mictiques chez Brachionus calyciflorus (Pallas) et B. rubens Ehr. (Rotifères). Comptes Rendus de l’Académie des Sciences Paris 283: 1497–1500.Google Scholar
  18. Pourriot, R. & C. Rougier, 1977. Effets de la densité de population et du groupement sur la reproduction de Brachionus calyciflorus (Pallas) (Rotifère). Annales de Limnologie 13: 101–113.Google Scholar
  19. Pourriot, R. & C. Rougier, 1979. Influences conjuguées du groupement et de la qualité de la nourriture sur la reproduction de Brachionus plicatilis O.F. Müller (Rotifère). Netherlands Journal of Zoology 29: 242–264.CrossRefGoogle Scholar
  20. Pourriot, R. & C. Rougier, 1986. Rythmes de production de femelles sexuées chez le Rotifère Brachionus calyciflorus en élevage à temperature constante. Bulletin de la Société Zoologique de France 111: 203–207.Google Scholar
  21. Pourriot, R., C. Rougier & D. Benest, 1986. Qualité de la nourriture et contrôle de la mixis chez le Rotifère Brachionus rubens, Ehr. Bulletin de la Société Zoologique de France 111: 105–111.Google Scholar
  22. Rougier, C. & R. Pourriot, 1977. Aging and control of the reproduction in Brachionus calyciflorus (Pallas) (Rotatoria). Experimental Gerontology 12: 137–151.PubMedCrossRefGoogle Scholar
  23. Rougier, C., R. Pourriot & P. Clément, 1977. Determination of mixis in Brachionus. Archiv für Hydrobiologie, Ergebnisse der Limnologie 8: 163–166.Google Scholar
  24. Schröder, T. & J. J. Gilbert, 2004. Transgenerational plasticity for sexual reproduction and diapause in the life cycle of monogonont rotifers: intraclonal, intraspecific and interspecific variation in the response to crowding. Functional Ecology 18: 458–466.CrossRefGoogle Scholar
  25. Schröder, T. & Walsh, E. J., 2007. Cryptic speciation in the cosmopolitan Epiphanes senta complex (Monogononta, Rotifera) with the description of new species, Hydrobiologia doi: 10.1007/s10750-007-9066-5.
  26. Snell, T. W., J. Kubanek, W. Carter, A. B. Payne, J. Kim, M. K. Hicks & C.-P. Stelzer, 2006. A protein signal triggers sexual reproduction in Brachionus plicatilis (Rotifera). Marine Biology 149: 763–773.CrossRefGoogle Scholar
  27. Stelzer, C.-P. & T. W. Snell, 2003. Induction of sexual reproduction in Brachionus plicatilis (Monogononta, Rotifera) by a density-dependent chemical cue. Limnology and Oceanography 48: 939–943.CrossRefGoogle Scholar
  28. Stenoien, H. K. & B. Pedersen, 2005. Mutation and epimutation load in haploid and diploid life forms. Journal of Theoretical Biology 233: 119–126.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Department of Biological SciencesDartmouth CollegeHanoverUSA
  2. 2.Department of Biological SciencesUniversity of Texas at El PasoEl PasoUSA

Personalised recommendations