, Volume 587, Issue 1, pp 225–239 | Cite as

Spatial and temporal distribution patterns of the macrozoobenthos assemblage in the salt marshes of Tejo estuary (Portugal)

  • João P. Salgado
  • H. N. Cabral
  • M. J. Costa


The present study focuses on the spatial and temporal distribution of the macroinvertebrate community of the salt marsh areas of the Tejo estuary, based on surveys conducted from autumn 1998 to summer 2000. Samples were collected quarterly in five different intertidal areas along an elevation gradient in: mudflats, creek mouths, creeks, pioneer salt marsh areas and middle marsh areas. A total of 36 benthic invertebrate taxa were identified. Insect larvae were the most well represented group, with 10 taxa identified. Oligochaetes and ostracods were the most numerically abundant taxa, whereas bivalves dominated in biomass. Benthic macroinvertebrate assemblages were dominated, both in number and biomass, by deposit feeders. Three distinct macroinvertebrate assemblages were distinguished along the elevation gradient, based on species presence, density and biomass: the unvegetated muddy areas with a macrobenthic assemblage composed mostly by infauna; the salt marsh pioneer areas of Spartina maritima in which several epibenthic taxa were found, as well as endobenthic taxa characteristic of muddy sediment; and the creek margins, with epifauna taxa such as insect larvae and crustaceans and a low abundance of benthic infauna. Total biomass in the unvegetated and Spartina areas was higher during spring and summer mainly due to the increase in biomass of Scrobicularia plana and Hydrobia ulvae. No decreases in the salt marsh macroinvertebrate biomass values were observed during the highest densities of their potential nektonic predators (summer). This fact might indicate that macroinvertebrates are not a limiting resource for the nektonic species, and that the natural biomass increment of these invertebrate species could be masking the predation/disturbance caused by the nektonic species.


Benthic invertebrates Distribution patterns Salt marsh Tejo estuary 



This work was possible due to the financial support of the EU through the project EUROSAM (contract ENV4-CT97-0436) and of the Fundação para a Ciência e Tecnologia through the project FESTA (PRAXIS 2/2.1/MAR/1715/95) and the grant PRAXIS XXI BD/3541/97. We would also like to thank Paula Chainho and Luisa Chaves for their precious comments on the final draft of this manuscript.


  1. Beeftink, W. G., 1977. The coastal salt marshes of Western and Northern Europe: an ecological and phytosociological approach. In Chapman, V. J. (eds), Wet Coastal Ecosystems. Elsevier, Amsterdam, 93–121.Google Scholar
  2. Begon, M., J. L. Harper & C. R. Townsend, 1986. Ecology. Individuals, Populations and Communities. Blackwell Scientific Publications, Oxford.Google Scholar
  3. Beukema, J. J., 1976. Biomass and species richness of the macro-benthic animals living on the tidal flats of the Dutch Wadden Sea. Netherlands Journal of Sea Research 10: 236–261.CrossRefGoogle Scholar
  4. Cabral, H. N., 1998. Utilização do estuário do Tejo como área de viveiro pelos linguados, Solea solea (Linnaeus, 1758) e Solea senegalensis Kaup, 1858, e robalo, Dicentrarchus labrax (Linnaeus, 1758). [Ph.D Thesis]. Universidade de Lisboa, Lisbon.Google Scholar
  5. Calvário, J., 1982. Estudo Ambiental do Estuário do Tejo. Povoamentos Bentónicos Intertidais (substratos móveis). Comissão Nacional do Ambiente, Lisbon.Google Scholar
  6. Catarino, F., J. D. Tenhunen, V. Brotas & O. Llange, 1985. Application of CO2-porometer methods to assessment of components of photosynthetic production in estuarine ecosystems. Marine Biology 89: 37–43.CrossRefGoogle Scholar
  7. Cattrijsse, A., E. S. Makwaia, H. R. Dankwa, O. Hamerlynck & M. A. Hemminga, 1994. Nekton communities of an intertidal creek of an European estuarine brackish marsh. Marine Ecology Progress Series 109: 195–208.Google Scholar
  8. Clarke, K. R. & R. M. Warwick, 1994. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation. Natural Environmental Research Council, Plymouth Marine Laboratory, Plymouth.Google Scholar
  9. Costa, M. J., 1988. Écologie alimentaire des poissons de l’estuaire du Tage. Cymbium 12: 301–320.Google Scholar
  10. Costa, M. J. & H. N. Cabral, 1999. Changes in the Tejo nursery function for commercial fish species: some perspectives for management. Aquatic Ecology 33: 287–292.CrossRefGoogle Scholar
  11. Curras, A. & J. Mora, 1991. Comunidades bentonicas de la ria del Eo (Galicia-Asturias: NW España). Cahiers de Biologie Marine 32: 57–81.Google Scholar
  12. Eagle, R. A., 1975. Natural fluctuations in a soft bottom benthic community. Journal of the Marine Biological Association of the United Kingdom 55: 865–878.Google Scholar
  13. Esselink, P. & L. Zwarts, 1989. Seasonal trend in the burrow depth and tidal variation in feeding activity of Hediste diversicolor. Marine Ecology Progress Series 56: 243–254.Google Scholar
  14. Frid, C. L. J. & R. James, 1989. The marine invertebrate fauna of a British coastal salt marsh. Holarctic Ecology 12: 9–15.Google Scholar
  15. Gaston, G. R., C. Rakocinski, S. S. Brown & C. M. Cleveland, 1998. Trophic structure in estuaries: response of macrobenthos to natural and contaminant gradients. Marine and Freshwater Research 49: 833–846.CrossRefGoogle Scholar
  16. Gaudêncio, M. J., M. T. Guerra & M. Glémarec, 1991. Recherches biosedimentaires sur la zone maritime de l’estuaire du Tage, Portugal: données sédimentaires préliminaires. In Elliot, M. & J.-P. Ducrotoy (eds), Estuaries and Coasts: Spatial and Temporal Intercomparisons. Olsen & Olsen, Fredenberg.Google Scholar
  17. Guerreiro, J., 1998. Growth and production of the bivalve Scrobicularia plana in two Southern European estuaries. Vie et Milieu 48: 121–131.Google Scholar
  18. Hampel, H., 2003. Factors influencing the habitat value of tidal marshes for nekton in the Westerschelde estuary. [Ph.D Thesis]. University of Gent, Gent.Google Scholar
  19. Ieno, E. N. & R. O. Bastida, 1998. Spatial and temporal patterns in coastal macrobenthos of Samborombo bay, Argentina: a case study of very low diversity. Estuaries 21: 690–699.CrossRefGoogle Scholar
  20. Jackson, D., 1985. Invertebrate population associated with Spartina anglica salt-marsh and adjacent intertidal mud flats. Estuarine and Brackish-Water Sciences Association Bulletin 40: 8–14.Google Scholar
  21. Jackson, D., C. F. Mason & S. P. Long, 1985. Macro-invertebrate populations and production on a salt-marsh in East England dominated by Spartina anglica. Oecologia 65: 406–411.CrossRefGoogle Scholar
  22. Kneib, R. T., 1984. Patterns of invertebrate distribution and abundance in the intertidal salt marsh: causes and questions. Estuaries 7: 392–412.CrossRefGoogle Scholar
  23. Laffaille, P., S. Brosse, E. Feunteun, A. Baisez & J.-C. Lefeuvre, 1998. Role of fish communities in particulate organic matter fluxes between salt marshes and coastal marine waters in the Mont Saint-Michel Bay. Hydrobiologia 373–374: 121–133.CrossRefGoogle Scholar
  24. Laffaille, P., E. Feunteun & J.-C. Lefeuvre, 1999. Compétition alimentaire entre deux espèces de gobies, Pomatoschistus lozanoi (de Buen) et P. minutus (Pallas), dans un marais salé macrotidal. Compte Rendu de l’Académie des Sciences de la Vie 322: 897–906.CrossRefGoogle Scholar
  25. Levin, L. A. & T. S. Talley, 2000. Influences of vegetation and abiotic environmental factors on salt marsh invertebrates. In Weinstein, M. P. & D. A. Kreeger (eds), Concepts and Controversies in Tidal Marsh Ecology. Kluwer Academic Publishing, Amsterdam, 661–708.Google Scholar
  26. Levin, L. A., T. S. Talley & J. Hewitt, 1998. Macrobenthos of Spartina foliosa (Pacific cordgrass) salt marshes in Southern California: community structure and comparison to a Pacific mudflat and a Spartina alterniflora (Atlantic smooth cordgrass) marsh. Estuaries 21: 129–144.CrossRefGoogle Scholar
  27. Lillebø, A. I., M. A. Pardal & J. C. Marques, 1999. Population structure, dynamics and production of Hydrobia ulvae (Pennant) (Mollusca: Prosobranchia) along an eutrophication gradient in the Mondego estuary (Portugal). Acta Oceanologica 20: 289–304.CrossRefGoogle Scholar
  28. Ludwig, J. A. & J. F Reynolds, 1988. Statistical Ecology. A Primer on Methods and Computing. John Wiley, New York.Google Scholar
  29. Marques, J. C., I. Martins, C. Teles-Ferreira & C. Cruz, 1994. Population dynamics, life history, and production of Cyathura carinata (Krøyer) (Isopoda: Anthuridae) in the Mondego estuary, Portugal. Journal of Crustacean Biology 14: 258–272.CrossRefGoogle Scholar
  30. Marques, J. C., L. B. Rodrigues & A. J. A. Nogueira, 1993. Intertidal macrobenthic communities structure in the Mondego estuary (Western Portugal): reference situation. Vie et Milieu 43: 177–187.Google Scholar
  31. Mathieson, S., A. Cattrijsse, M. J. Costa, P. Drake, M. Elliott, J. Gardner & J. Marchand, 2000. Fish assemblages of European tidal marshes: a comparison based on species, families and functional guilds. Marine Ecology Progress Series 204: 225–242.Google Scholar
  32. Moreira, F. M., 1995. A utilização das zonas entre-marés do estuário do Tejo por aves aquáticas e suas implicações para os fluxos de energia na teia trófica estuarina. [Ph.D Thesis]. Universidade de Lisboa, Lisbon.Google Scholar
  33. Moy, L. D. & L. A. Levin, 1991. Are Spartina marshes a replaceable resource? A functional approach to evaluation of marsh creation efforts. Estuaries 14: 1–16.CrossRefGoogle Scholar
  34. Pearson, T. H. & R. Rosenberg, 1978. Macrobenthic succession in relation to organic enrichment and pollution of marine environment. Oceanography and Marine Biology: an Annual Review 16: 229–311.Google Scholar
  35. Rader, D. N., 1984. Salt marsh benthic invertebrates: small-scale patterns of distribution and abundance. Estuaries 7: 413–420.CrossRefGoogle Scholar
  36. Rees, H. L., D. C. Moore, T. Pearson, M. Elliott, M. Service, J. Pomfret, & D. Johnson, 1990. Procedures for the monitoring of marine benthic communities at UK sewage sludge disposal sites. Department of Agriculture & Fisheries for Scotland. Fisheries Information Pamphlet 18.Google Scholar
  37. Reimold, R. J., 1977. Mangals and salt marshes of the Eastern United States. In Chapman, V. J. (ed.), Wet Coastal Ecosystems. Elsevier, Amsterdam, 157–166.Google Scholar
  38. Robineau, B., 1987. Caratérisation des peuplements macrozoobenthiques de l’estuaire de la Loire. Vie et Milieu 37: 67–76.Google Scholar
  39. Rodrigues, A. M., 1992. Environmental status of a multiple use estuary, through the analysis of benthic communities: the Sado estuary, Portugal. [Ph.D Thesis]. Department of Biological and Molecular Sciences, University of Sterling, Sterling.Google Scholar
  40. Saldanha, L., 1980. Estudo Ambiental do Estuário do Tejo. Povoamentos Bentónicos. Peixes e Ictioplâncton do Estuário do Tejo. Comissão Nacional do Ambiente, Lisbon.Google Scholar
  41. Salgado, J. P., H. N. Cabral & M. J. Costa, 2004a. Comparison of the fish assemblages in tidal salt marsh creeks and in adjoining mudflat areas in the Tejo estuary (Portugal). Cahiers de Biologie Marine 45: 213–224.Google Scholar
  42. Salgado, J. P., H. N. Cabral & M. J. Costa, 2004b. Feeding ecology of the gobies Pomatoschistus minutus (Pallas, 1770) and Pomatoschistus microps (Krøyer, 1838) in the upper Tagus estuary, Portugal. Scientia Marina 68: 425–434.CrossRefGoogle Scholar
  43. Sardá, R., K. Foreman, C. E. Werme & J. Valiela, 1998. The impact of epifaunal predation on the structure of macroinfaunal invertebrate communities of tidal saltmarsh creeks. Estuarine, Coastal and Shelf Science 46: 657–669.CrossRefGoogle Scholar
  44. Sokal, R. R. & F. J. Rohlf, 1981. Biometry. 2nd edn. W. H. Freeman, New York.Google Scholar
  45. Sprung, M., 1994. Macrobenthic secondary production in the intertidal zone of the Ria Formosa lagoon in the Southern Portugal. Estuarine, Coastal and Shelf Science 38: 539–558.CrossRefGoogle Scholar
  46. Ter Braak, C. J. F., 1995. CANOCO—a Fortran program for canonical community ordination by partial detrended canonical correspondence analysis, principal components and redundancy analysis. Agricultural and Mathematical Group, Ministry of Agriculture and Fisheries, ITI-TNO, Wageningen.Google Scholar
  47. Whitlatch, R., 1981. Animal-sediment relationships in intertidal marine benthic habitats: some determinants of deposit-feeding species diversity. Journal of Experimental Marine Biology and Ecology 53: 31–45.CrossRefGoogle Scholar
  48. Wiltse, W. I., K. H. Foreman, J. M. Teal & I. Valiela, 1984. Effects of predators and food resources on the macrobenthos of salt marsh creeks. Journal of Marine Science 42: 923–942.Google Scholar
  49. Wolff, W. J., 1973. The estuary as an habitat. An analysis of data on the soft bottom macrofauna of the estuarine area of the rivers Rhine, Meuse and Scheldt. Zoologische Verhandelingen 126: 1–242.Google Scholar
  50. Ysebaert, T. P., P. Meire, J. Coosen & K. Essink, 1998. Zonation of intertidal macrobenthos in the estuaries of Schelde and Ems. Aquatic Ecology 32: 53–71.CrossRefGoogle Scholar
  51. Zar, J. H., 1996. Biostatistical Analysis. 3rd edn. Prentice Hall, New Jersey.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • João P. Salgado
    • 1
  • H. N. Cabral
    • 1
    • 2
  • M. J. Costa
    • 1
    • 2
  1. 1.Faculdade de Ciências, Instituto de OceanografiaUniversidade de LisboaLisbonPortugal
  2. 2.Faculdade de Ciências, Departamento de Biologia AnimalUniversidade de LisboaLisbonPortugal

Personalised recommendations